
• Evaporation and mixing of droplets directly interact with
the gas phase subgrid reaction and mixing

• Modifications to the established LEMLES including
a new UDF based subgrid model for use in other codes.
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Summary

Final objective: Establish predictive capabilities to
evaluate fuel sensitivities at relevant operating
conditions focusing on LBO, cold restart, and altitude
relight. Develop a subgrid closure for such predictions
Challenges: multi-scale, multi-mode burning, multi-
phase physics, finite-rate detailed/reduced kinetics,
break-up and dense-dilute transition, computational cost

NJFCP rig: LES of Stable and LBO comb.Motivation and Objectives 

High pressure and lean operating conditions required for 
higher efficiencies and lower emissions, however, they 
lead to undesirable combustion dynamics
1. Establish a new multi-scale subgrid model for three-

phase reacting flows (gas, liquid droplets, soot) 
2. Demonstrate ability to predict fuel sensitivity on for 

stable and LBO conditions under NJFCP
3. Demonstrate predictive capability for cold restart and 

altitude relight, and validate against NJFCP data

Two Phase Subgrid Model Development

Conclusions
• Detailed analysis of hybrid EE-EL for evaporating sprays
• Initial studies for two phase Subgrid LEM closure
• LES of NJFCP rig at stable and LBO conditions

1A. Panchall et al., AIAA-2016-4694.
2R. Ranjan et al., AIAA-2016-4895.
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LEMLES Flowchart

Next Steps
• Continuation of two-phase subgrid model development
• Comparison of NJFCP LES predictions with experiments
• Application of the two phase subgrid model to test rigs

Iso-surfaces of volume fraction shown in gray and EL
droplets represented as spheres colored by their radii

• Validation against experimental evaporating spray jet
• Extent of EE to EL transition can be modified by changing

the transition volume fraction
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Four stages for
Numerical LBO

• (0-3 ms) Quasi-stable regime
• (3-9 ms) Reduced burning regime
• (9-17 ms) Unstable flame regime
• (> 17 ms) Completion of LBO
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the fuel flow rate

Evolution 
of global 
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Hybrid EE-EL for Dense-to-Dilute transition
• Dynamic transition strategy between Eulerian-Eulerian (EE)

and Eulerian-Lagrangian (EL) for spray combustion
• EE saves computational cost in the dense, EL more

accurate in dilute. Hybrid approach more physical.
• Extension towards interface resolved EE simulations

in the dense regimes to be addressed in future

• LESLIE: Multi-block finite volume compressible multi-
species and multiphase flow solver

• Finite rate kinetics: A2 (29 species, 185 steps),
C1 (27 species, 185 steps), C5 (29 species, 210 steps)


