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Motivation

 ICAO agreed to implement a Global Market-based 
Measure (GMBM) scheme 
– Carbon Offsetting and Reduction Scheme for International 

Aviation (CORSIA) (39th Assembly, 2016).
– Aviation biofuels (biojet) are expected to play an important role.

 We need to know to what extent aviation biofuels can 

help reduce emissions.

 Induced Land Use Change (ILUC) emissions will be a 

part of the aviation biofuel emission estimates for the 

ICAO/CAEP/AFTF process, so we need the best possible 

estimated values.



3

Induced Land Use Change Impacts

• Reduced consumption of the feedstock in non-biofuel 
uses.

• Switching among crops to produce more of the biofuel 
commodity.

• Changes at the extensive margin to convert pasture 
and forest to cropland.

• Changes at the intensive margin to increase crop yield, 
engage in more double cropping, and increase 
cultivation of unused land.

• Shifts in global production and trade. 
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Estimating ILUC emissions

• First, estimate the global land use change using an 
economic equilibrium model
– CARD–FAPRI (FASOM, US EPA), GTAP-BIO (CARB)
– MIRAGE-BioF (EU), GLOBIOM (EU)

• Second, calculate emissions using an emission 
factor/accounting model
– plant biomass carbon, 
– soil carbon, 
– forgone carbon sequestration

• There are important disparities among 
models/estimations 
– Modelling theoretical background
– Baseline assumptions, shock size, simulation approach
– Emissions calculation (amortization periods, etc.). 
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Objectives

 Our long term objective is to provide reliable ILUC 

emission estimates for different types of aviation biofuels 

produced in any region of the world.

 Our near term objectives are 

• To test simulations for aviation biofuels produced in 

four regions using GTAP-BIO and AEZ-EF.

• In collaboration with the GLOBIOM group, validate 

parameters and address uncertainty associated with 

ILUC modeling.
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GTAP-BIO

• Computable general equilibrium (CGE) model

• Originally created by incorporating GTAP-AEZ into GTAP-E  
for biofuels policy analysis.

• Aggregated to 19 regions, disaggregated agricultural, 
biofuels, and other related sectors.

• Land was disaggregated into up to 18 Agro-Ecological 
Zones (AEZs) in each region 

• GTAP database (2011 base year).

• Land database 
– Cropland, Pasture, Accessible forest
– Harvested area for all crops
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Aviation biofuels 
production shock 

to 2035 (mandate)

GTAP-BIO and AEZ-EF
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Study scope

• Pathways
– ASTM approved technologies

• Fischer-Tropsch biojet (FTJ) which represents both FT-SPK 
and FT-SKA, HEFA, SIP, and ATJ 

– Feedstocks that entail higher risks to induce LUC
– Agricultural and forestry residues, waste tallow, used 

cooking oil (UCO), municipal solid waste (MSW), and 
microalgae are excluded.

• Regions
– USA, EU, Brazil, Malaysia & Indonesia
– Major biofuels producing and jet fuel consumption 

regions

• Shock
– Biojet production in 2035, CORSIA policy target
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Simulations

USA Brazil EU
Mala
Indo

Soy HEFA 1 6

Rapeseed HEFA 9

Palm HEFA 12

Sugarcane ATJ 7

Corn ATJ 2

Sugar beet SIP 10

Sugarcane SIP 8

Switchgrass FTJ 3

Miscanthus FTJ 4 11

Poplar FTJ 5
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 Shock size development

• IEA 450 scenario

• 62 Mtoe (21.2 BGGE), 2035

Study scope
Feedstock availability
Economic feasibility
Road biofuels coproducts
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Shock size (BGGE)

Jet Road

USA

1 Soy HEFA 1.9 0.5 1.4

2 Corn ATJ 1.1 0.8 0.2

3 Miscanthus FTJ 2.3 0.6 1.7

4 Switchgrass FTJ 2.3 0.6 1.7

5 Poplar FTJ 2.3 0.6 1.7

Brazil

6 Soy HEFA 1.4 0.4 1.1

7 Sugarcane SIP 0.8 0.8 0.0

8 Sugarcane ATJ 1.1 0.8 0.2

EU

9 Rapeseed HEFA 2.1 0.5 1.6

10 Miscanthus FTJ 1.7 0.4 1.3

11 Sugar beet SIP 0.6 0.6 0.0

Mala & Indo 12 Palm HEFA 1.7 0.4 1.3

ALL ALL 19.2 7.1 12.1

21 BGGEJet RoadTotalPathwayRegion NO.
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Model modifications

• Introduce the 12 aviation biofuels pathways into GTAP-
BIO using literature cost data and technology 
specifications. 

• Introduce miscanthus, switchgrass, and poplar into the 
GTAP-BIO database and model and the AEZ-EF model. 
Nest them with cropland pasture in land supply for the 
US.

• Split coproducts of aviation biofuels. Coproducts may 
include renewable diesel, naphtha, and others. They will 
supply road transport.

• Related parameters such as land transformation 
elasticities have been recalibrated based on updated 
information. 
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Market-mediated responses 
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GTAP ILUC CI (gCO2e/MJ)

USA

1 Soy HEFA 20

2 Corn ATJ 15

3 Miscanthus FTJ -30

4 Switchgrass FTJ 3

5 Poplar FTJ 15

Brazil

6 Soy HEFA 20

7 Sugarcane SIP 5

8 Sugarcane ATJ 4

EU

9 Rapeseed HEFA 18

10 Miscanthus FTJ 1

11 Sugar beet SIP 11

Mala & Indo 12 Palm HEFA 50

ALL ALL 9

60

30-yr. gCO2e/MJ

-30 20030-yrPathwayRegion NO.
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SIP & ATJ

• US ATJ and EU SIP
– Stronger crop switching 

from soybean, wheat, other 
feed crops so that export 
decreases

– Deforestation in other 
regions

• CP plays important role in 
USA and Brazil; CP has a 
lower EF than pasture.

• Two Brazil sugar pathways 
are similar in LUC pattern

• 0.2-0.5% feedstock yield 
growth
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SIP & ATJ

• Natural vegetation carbon is the largest carbon source (i.e. carbon in 
forest, pasture, and CP) 

• Three sugar crops have large crop carbon sequestration due to the 
large dry yield

• Two Brazil sugar pathways have similar distribution; Sugarcane, as a 
perennial crop has larger SOC; 

• Peat oxidation impacts are small.

Emissions (CI) decomposition, g CO2e /MJ

Region Pathway Natural Veg. Foregone
Crop 

Carbon
SOC Peat

30-year 
CI

USA Corn ATJ 7.0 1.2 -0.2 6.0 0.6 14.5

Brazil
Sugarcane SIP 9.0 1.2 -7.7 2.4 0.3 5.3

Sugarcane ATJ 6.5 0.9 -5.4 1.7 0.3 3.9

EU Sugar beet SIP 6.9 1.8 -3.5 5.3 0.8 11.3
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HEFA

• Strong yield responses globally

• Stronger crop switching in the 
USA and EU

• In Mala & Indo, palm area 
increase is smaller than net 
required
– strong market-mediated 

responses in palm oil 
consumption and trade

– The total palm oil production in 
Mala & Indo increases by 6.2%. 
It can be decomposed into an 
11.4% increase in domestic 
consumption and 5.2% 
decrease in exports. 

– Area expansion in rapeseed 
(0.18 Mil. ha) and other 
oilseeds (0.40 Mil.ha)
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HEFA

• USA soy HEFA, trade impact
– Decrease in soybean and soy oil export 

• Soybean export to China decreases by 11%
• Soybean oil export to Central and Caribbean Americas 

decrease by 19.8%
• Export from Brazil and Mala & Indo increases

– US imports of palm oil, rapeseed oil, and other 
vegetable oils increase by 1.3%, 0.9%, and 8.1%, 
respectively. 

– Strong increase in meal export (59%).
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HEFA

• Peat oxidation is a major carbon source in all HEFA 
pathways.

• Brazil HEFA has relatively less crop switching, but more 
expansion into natural vegetation, so higher emissions 
from natural vegetation.

Emissions (CI) decomposition, g CO2e /MJ

Region Pathway
Natural 
Veg.

Foregone
Crop 

Carbon
SOC Peat

30-year 
CI

USA Soy HEFA 3.8 0.4 2.1 3.9 9.8 20.0

Brazil Soy HEFA 7.0 0.6 -1.9 7.7 6.7 20.1

EU Rapeseed HEFA 5.1 1.1 1.2 3.5 6.8 17.7

Mala & Indo Palm HEFA 10.3 0.9 -6.6 0.4 44.5 49.5



19

Schedule and Status

 We have updated the GTAP data base and model from 
2004 to 2011.

 Aviation biofuels and cellulosic crops have been 
introduced into the data base and the new model.

 We have done test simulations with the new model for 12 
aviation biofuels pathways.

 Currently, we are working on comparing results between 

GTAP-BIO and GLOBIOM.
 This process helps improve both models.

 We will test the sensitivity of important parameters.
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Recent Accomplishments and 
Contributions

• Presentations to the ICAO/CAEP/AFTF group in February 

and June in 2017.

Publications

• Taheripour, Farzad, Xin Zhao, and Wallace E. Tyner. "The impact of 
considering land intensification and updated data on biofuels land 
use change and emissions estimates." Biotechnology for biofuels 
10.1 (2017): 191.



21

Summary

• Summary statement
– Producing aviation biofuels using land-based feedstocks will 

induce global land use change.
– Our preliminary results show that vegetable oil HEFA pathways 

will have relatively higher carbon intensity, largely due to the 
related peat oxidation. 

– Cellulosic crops tend to have small or even negative ILUC 
emission mainly due to the high soil carbon sequestrations.

• Next steps?
– Work with the GLOBIOM group to improve both models based on 

the available information

• Key challenges/barriers
– Comparisons between GTAP-BIO and GLOBIOM can be 

challenging given the differences in model design, data base, 
emissions accounting, etc.  
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USA

1 Soy HEFA

2 Corn ATJ

3 Miscanthus FTJ

4 Switchgrass FTJ

5 Poplar FTJ

Brazil

6 Soy HEFA

7 Sugarcane SIP

8 Sugarcane ATJ

EU

9 Rapeseed HEFA

10 Miscanthus FTJ

11 Sugar beet SIP

Mala & Indo 12 Palm HEFA 

20015

Feedstock yield 

(MT/ha)

75 100500400

Fuel yield 
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Net energy yield 
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10 0PathwayRegion NO.

Feedstock
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Carbon intensity

𝑖 ∶ Carbon source/sink

𝑗 ∶ Land transitions (forest, pasture, CP, cellulosic, etc.)

𝑘 ∶ Argo-ecological zones

𝑟 ∶ Regions

𝑌𝑒𝑎𝑟𝑠 ∶ 20-year or 30-year

𝐵𝑖𝑜𝑓𝑢𝑒𝑙𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ∶ Shock size 

CI =
σ𝑖,𝑗,𝑘,𝑟 𝐶𝑂2𝑒𝑖,𝑗,𝑘,𝑟

𝑌𝑒𝑎𝑟𝑠 × 𝐵𝑖𝑜𝑓𝑢𝑒𝑙𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
=
𝑔 𝐶𝑂2𝑒

𝑀𝐽
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20-year or 30-year

CI =
σ𝑖,𝑗,𝑘,𝑟 𝐶𝑂2𝑒𝑖,𝑗,𝑘,𝑟

𝑌𝑒𝑎𝑟𝑠 × 𝐵𝑖𝑜𝑓𝑢𝑒𝑙𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
=
𝑔 𝐶𝑂2𝑒

𝑀𝐽

Factor
𝒈 𝑪𝑶𝟐𝒆 𝑴𝑱

Natural 

vegetation 

Foregone 

sequestration

Agricultural 

biomass

Soil organic 

carbon

Peatland 

oxidation

Production 

years

Variable   
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Brief History of GTAP

• This week GTAP celebrates its 25th anniversary, having 
been founded in 1992.

• We are now using the 9th version of the data base 
(2011) and developing the 10th (2014).

• The data base contains 140 countries and regions and 57 
economic sectors plus all the biofuel sectors

• Land is divided into 18 agro-ecological zones (AEZs)

• The GTAP model and data base are publically available.
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USA

Brazil

EU

Mala & 

Indo
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ILUC from the US RFS mandates 
(corn ethanol)
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History of GTAP-BIO Model

GTAP-E (2002), first model of the energy-economy-environment-trade 
linkages.

GTAP-AEZ (2005), land use model designed based on 18 Agro-Ecological 
Zones for agricultural production including crops, livestock, and forestry. 

Initial GTAP-BIO (2008), combing GTAP-E and GTAP-AEZ, highlighting 
interactions among biofuel, livestock, and forestry, ignoring by-products

Improved GTAP-BIO-ADV (2010), ILUC emissions due to first-generation 
biofuels, considering biofuel by-products and crop yield response (YDEL), 
variation in global extensive margin (ETA), and cropland pasture.  

GTAP-BIO-ADVFUEL (2011), modelling ILUC emissions due to second-
generation biofuels, i.e. switchgrass-gasoline, miscanthus-gasoline etc.

Latest GTAP-BIO, improvements on the intensive margin (double 
cropping).
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FTJ

• Net land required is 
equal to feedstock area 
expansion.
– Driven by net energy yield

• In the USA, cropland 
pasture is the major 
source for cellulosic crop 
expansion.

• There is no CP in EU
– More impact on trade
– More emissions in ROW

 Global LUC decomposition
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FTJ

• As perennial crops, 
cellulosic crops entail high 
sequestration in soil and 
biomass
– Miscanthus has the highest 

sequestration due to the high 
yield

– Poplar has relatively lower 
sequestration in soil

• For EU miscanthus
– Relatively more global 

deforestation compared with the 
US miscanthus FTJ
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