Estimation of Land Use Change Emission Values for Aviation Biofuels Production

Project 13-C-AJFE-PU

Project manager: Dan Williams, Jim Hileman, Nate Brown, FAA Lead investigator: Wallace E. Tyner, Purdue University

> September 26 & 27, 2017 Alexandria, VA

Opinions, findings, conclusions and recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of ASCENT sponsor organizations.

Motivation

- ICAO agreed to implement a Global Market-based Measure (GMBM) scheme
 - Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) (39th Assembly, 2016).
 - Aviation biofuels (biojet) are expected to play an important role.
- We need to know to what extent aviation biofuels can help reduce emissions.
- Induced Land Use Change (ILUC) emissions will be a part of the aviation biofuel emission estimates for the ICAO/CAEP/AFTF process, so we need the best possible estimated values.

Induced Land Use Change Impacts

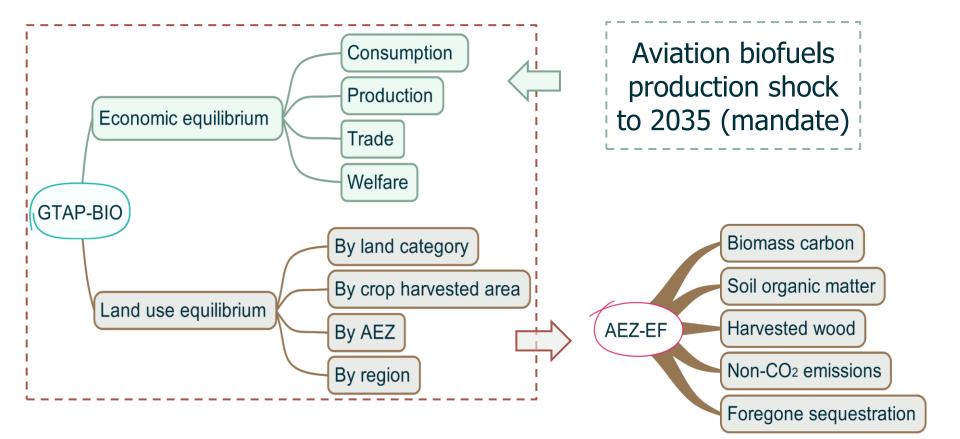
- Reduced consumption of the feedstock in non-biofuel uses.
- Switching among crops to produce more of the biofuel commodity.
- Changes at the extensive margin to convert pasture and forest to cropland.
- Changes at the intensive margin to increase crop yield, engage in more double cropping, and increase cultivation of unused land.
- Shifts in global production and trade.

Estimating ILUC emissions

- First, estimate the global land use change using an economic equilibrium model
 - CARD-FAPRI (FASOM, US EPA), GTAP-BIO (CARB)
 - MIRAGE-BioF (EU), GLOBIOM (EU)
- Second, calculate emissions using an emission factor/accounting model
 - plant biomass carbon,
 - soil carbon,
 - forgone carbon sequestration
- There are important disparities among models/estimations
 - Modelling theoretical background
 - Baseline assumptions, shock size, simulation approach
 - Emissions calculation (amortization periods, etc.).

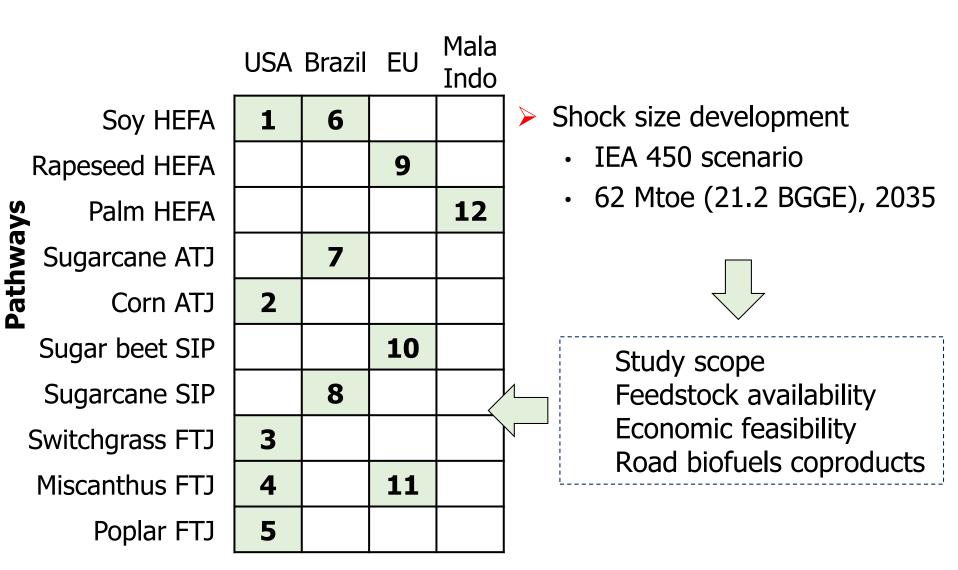
Objectives

- Our long term objective is to provide reliable ILUC emission estimates for different types of aviation biofuels produced in any region of the world.
- Our near term objectives are
 - To test simulations for aviation biofuels produced in four regions using GTAP-BIO and AEZ-EF.
 - In collaboration with the GLOBIOM group, validate parameters and address uncertainty associated with ILUC modeling.


GTAP-BIO

- Computable general equilibrium (CGE) model
- Originally created by incorporating GTAP-AEZ into GTAP-E for biofuels policy analysis.
- Aggregated to 19 regions, disaggregated agricultural, biofuels, and other related sectors.
- Land was disaggregated into up to 18 Agro-Ecological Zones (AEZs) in each region
- GTAP database (2011 base year).
- Land database
 - Cropland, Pasture, Accessible forest
 - Harvested area for all crops

GTAP-BIO and **AEZ-EF**

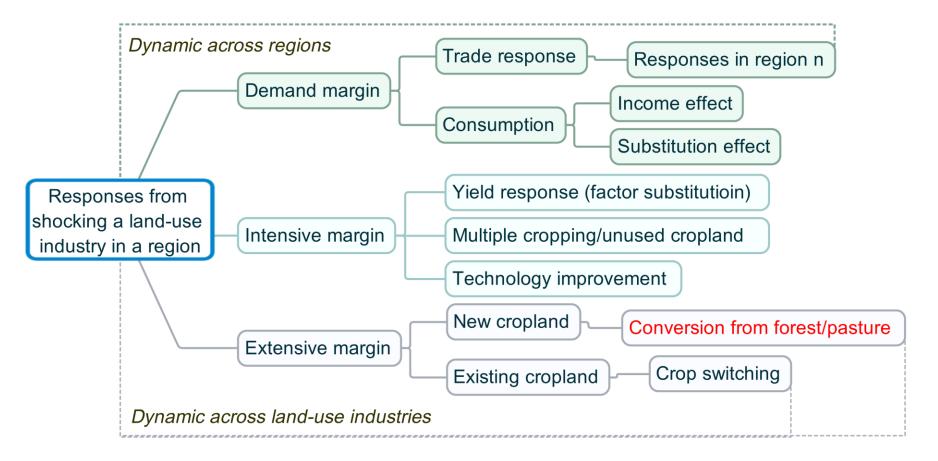

Study scope

- Pathways
 - ASTM approved technologies
 - Fischer-Tropsch biojet (FTJ) which represents both FT-SPK and FT-SKA, HEFA, SIP, and ATJ
 - Feedstocks that entail higher risks to induce LUC
 - Agricultural and forestry residues, waste tallow, used cooking oil (UCO), municipal solid waste (MSW), and microalgae are excluded.
- Regions
 - USA, EU, Brazil, Malaysia & Indonesia
 - Major biofuels producing and jet fuel consumption regions
- Shock
 - Biojet production in 2035, CORSIA policy target

Simulations

Shock size (BGGE)

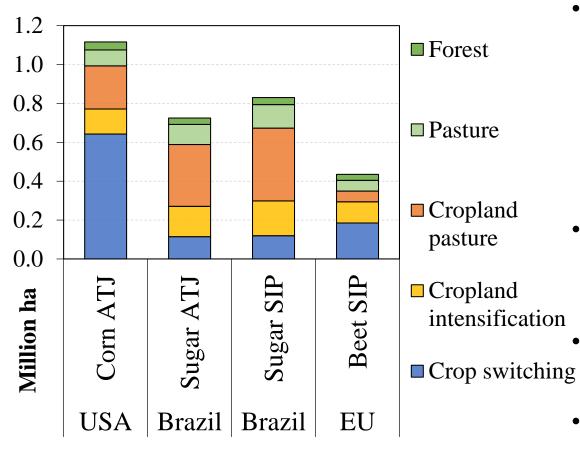
Region I	NO.	Pathway	Total	Jet	Road	<u>1 2 BGGE</u>
	1	Soy HEFA	1.9	0.5	1.4	
	2	Corn ATJ	1.1	0.8	0.2	
USA	3	Miscanthus FTJ	2.3	0.6	1.7	
	4	Switchgrass FTJ	2.3	0.6	1.7	
	5	Poplar FTJ	2.3	0.6	1.7	
	6	Soy HEFA	1.4	0.4	1.1	
Brazil	7	Sugarcane SIP	0.8	0.8	0.0	
	8	Sugarcane ATJ	1.1	0.8	0.2	
	9	Rapeseed HEFA	2.1	0.5	1.6	
EU	10	Miscanthus FTJ	1.7	0.4	1.3	
	11	Sugar beet SIP	0.6	0.6	0.0	
Mala & Indo	12	Palm HEFA	1.7	0.4	1.3	
ALL		ALL	19.2	7.1	12.1	■Jet ■Road


Model modifications

- Introduce the 12 aviation biofuels pathways into GTAP-BIO using literature cost data and technology specifications.
- Introduce miscanthus, switchgrass, and poplar into the GTAP-BIO database and model and the AEZ-EF model. Nest them with cropland pasture in land supply for the US.
- Split coproducts of aviation biofuels. Coproducts may include renewable diesel, naphtha, and others. They will supply road transport.
- Related parameters such as land transformation elasticities have been recalibrated based on updated information.

Market-mediated responses

GTAP ILUC CI (gCO₂e/MJ)


30-yr. gCO₂e/MJ

Region NO		Pathway	30-yr	-3	<u>0</u>	<u>0</u>	20	<u>60</u>
	1	Soy HEFA	20					
	2	Corn ATJ	15					
USA	3	Miscanthus FTJ	-30					
	4	Switchgrass FTJ	3					
	5	Poplar FTJ	15					
	6	Soy HEFA	20					
Brazil	7	Sugarcane SIP	5					
	8	Sugarcane ATJ	4					
	9	Rapeseed HEFA	18					
EU	10	Miscanthus FTJ	1					
	11	Sugar beet SIP	11					
Mala & Indo	12	Palm HEFA	50					
ALL		ALL	9					

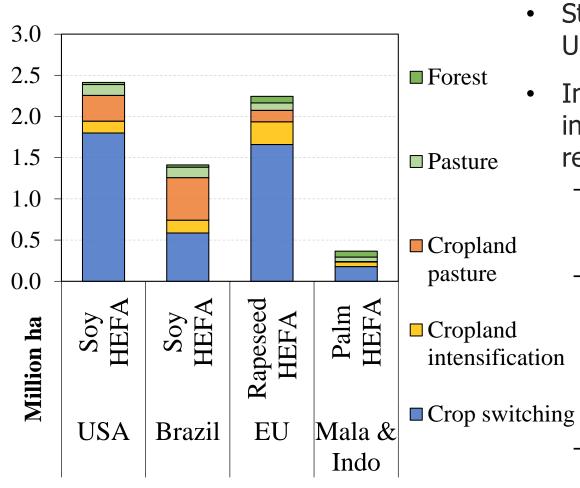
SIP & ATJ

Global LUC decomposition

• US ATJ and EU SIP

- Stronger crop switching from soybean, wheat, other feed crops so that export decreases
- Deforestation in other regions
- CP plays important role in USA and Brazil; CP has a lower EF than pasture.
 - Two Brazil sugar pathways are similar in LUC pattern
- 0.2-0.5% feedstock yield growth

SIP & ATJ


> Emissions (CI) decomposition, g CO₂e /MJ

	Region	Pathway	Natural Veg.	Foregone	Crop Carbon	SOC	Peat	30-year CI
	USA	Corn ATJ	7.0	1.2	-0.2	6.0	0.6	14.5
Brazil	Sugarcane SIP	9.0	1.2	-7.7	2.4	0.3	5.3	
	Sugarcane ATJ	6.5	0.9	-5.4	1.7	0.3	3.9	
	EU	Sugar beet SIP	6.9	1.8	-3.5	5.3	0.8	11.3

- Natural vegetation carbon is the largest carbon source (i.e. carbon in forest, pasture, and CP)
- Three sugar crops have large crop carbon sequestration due to the large dry yield
- Two Brazil sugar pathways have similar distribution; Sugarcane, as a perennial crop has larger SOC;
- Peat oxidation impacts are small.

HEFA

Global LUC decomposition • Strong

- Strong yield responses globally
- Stronger crop switching in the USA and EU
- In Mala & Indo, palm area increase is smaller than net required
 - strong market-mediated responses in palm oil consumption and trade
 - The total palm oil production in Mala & Indo increases by 6.2%. It can be decomposed into an 11.4% increase in domestic consumption and 5.2%
 decrease in exports.
 - Area expansion in rapeseed (0.18 Mil. ha) and other oilseeds (0.40 Mil.ha)

- USA soy HEFA, trade impact
 - Decrease in soybean and soy oil export
 - Soybean export to China decreases by 11%
 - Soybean oil export to Central and Caribbean Americas decrease by 19.8%
 - Export from Brazil and Mala & Indo increases
 - US imports of palm oil, rapeseed oil, and other vegetable oils increase by 1.3%, 0.9%, and 8.1%, respectively.
 - Strong increase in meal export (59%).

> Emissions (CI) decomposition, g CO₂e /MJ

Region	Pathway	Natural Veg.	Foregone	Crop Carbon	SOC	Peat	30-year CI
USA	Soy HEFA	3.8	0.4	2.1	3.9	9.8	20.0
Brazil	Soy HEFA	7.0	0.6	-1.9	7.7	6.7	20.1
EU	Rapeseed HEFA	5.1	1.1	1.2	3.5	6.8	17.7
Mala & Indo	Palm HEFA	10.3	0.9	-6.6	0.4	44.5	49.5

- Peat oxidation is a major carbon source in all HEFA pathways.
- Brazil HEFA has relatively less crop switching, but more expansion into natural vegetation, so higher emissions from natural vegetation.

Schedule and Status

- We have updated the GTAP data base and model from 2004 to 2011.
- Aviation biofuels and cellulosic crops have been introduced into the data base and the new model.
- We have done test simulations with the new model for 12 aviation biofuels pathways.
- Currently, we are working on comparing results between GTAP-BIO and GLOBIOM.

This process helps improve both models.

> We will test the sensitivity of important parameters.

Recent Accomplishments and Contributions

• Presentations to the ICAO/CAEP/AFTF group in February and June in 2017.

Publications

• Taheripour, Farzad, Xin Zhao, and Wallace E. Tyner. "The impact of considering land intensification and updated data on biofuels land use change and emissions estimates." Biotechnology for biofuels 10.1 (2017): 191.

Summary

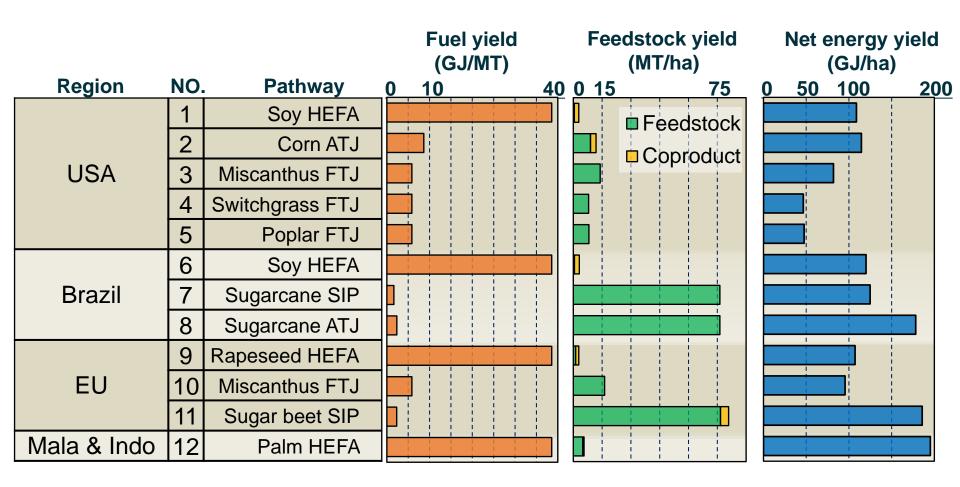
- Summary statement
 - Producing aviation biofuels using land-based feedstocks will induce global land use change.
 - Our preliminary results show that vegetable oil HEFA pathways will have relatively higher carbon intensity, largely due to the related peat oxidation.
 - Cellulosic crops tend to have small or even negative ILUC emission mainly due to the high soil carbon sequestrations.
- Next steps?
 - Work with the GLOBIOM group to improve both models based on the available information
- Key challenges/barriers
 - Comparisons between GTAP-BIO and GLOBIOM can be challenging given the differences in model design, data base, emissions accounting, etc.

Acknowledgements

- David Cui provided support with some of the model simulations.
- Hugo Valin from IIASA has been collaborating on model comparison activities.

Participants

- Farzad Taheripour, Research Associate Professor, Purdue University
- Xin Zhao, PhD student, Purdue University



Thanks

Questions and Comments

Yield Data

Carbon intensity

$$CI = \frac{\sum_{i,j,k,r} CO_2 e_{i,j,k,r}}{Years \times Biofuels \ production} = \frac{g \ CO_2 e_{MJ}}{MJ}$$

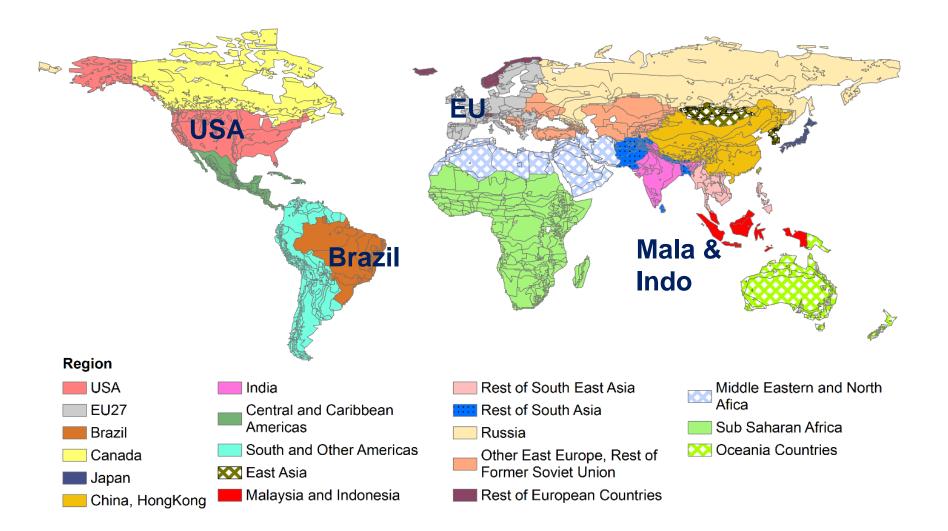
- *i* : Carbon source/sink
- *j* : Land transitions (forest, pasture, CP, cellulosic, etc.)
- k: Argo-ecological zones
- r: Regions

Years : 20-year or 30-year

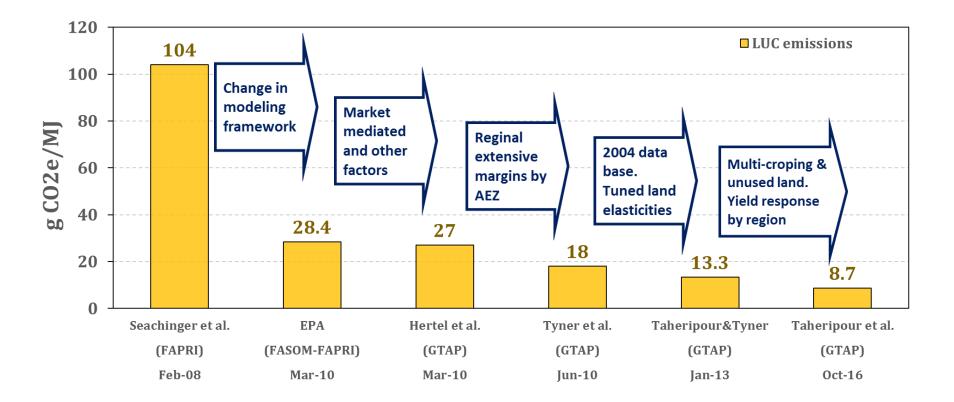
Biofuels production : Shock size

20-year or 30-year

$$CI = \frac{\sum_{i,j,k,r} CO_2 e_{i,j,k,r}}{Years \times Biofuels \ production} = \frac{g \ CO_2 e}{MJ}$$


Factor		MJ				
	Natural vegetation	Foregone sequestration	Agricultural biomass	Soil organic carbon	Peatland oxidation	Production years
Variable		\checkmark			\checkmark	\checkmark

Brief History of GTAP


- This week GTAP celebrates its 25th anniversary, having been founded in 1992.
- We are now using the 9th version of the data base (2011) and developing the 10th (2014).
- The data base contains 140 countries and regions and 57 economic sectors plus all the biofuel sectors
- Land is divided into 18 agro-ecological zones (AEZs)
- The GTAP model and data base are publically available.

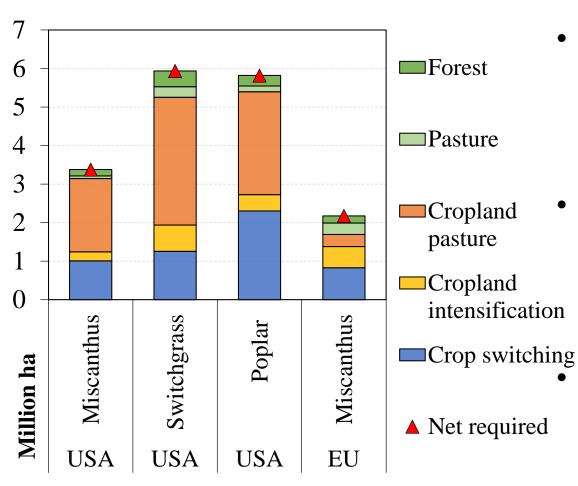
ILUC from the US RFS mandates (corn ethanol)

History of GTAP-BIO Model

GTAP-E (2002), first model of the energy-economy-environment-trade linkages.

GTAP-AEZ (2005), land use model designed based on 18 Agro-Ecological Zones for agricultural production including crops, livestock, and forestry.

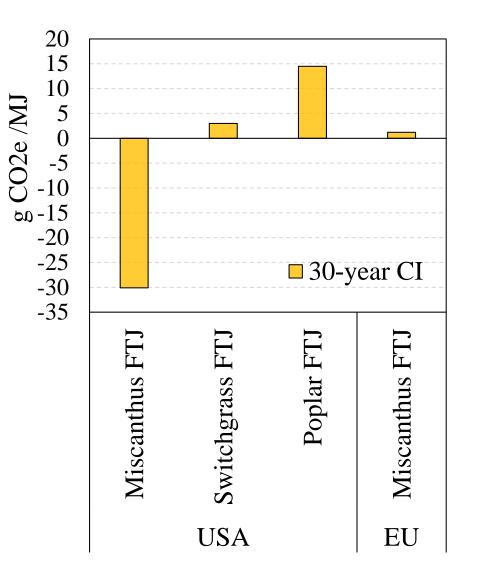
Initial GTAP-BIO (2008), combing GTAP-E and GTAP-AEZ, highlighting interactions among biofuel, livestock, and forestry, ignoring by-products


Improved GTAP-BIO-ADV (2010), ILUC emissions due to first-generation biofuels, considering biofuel by-products and crop yield response (YDEL), variation in global extensive margin (ETA), and cropland pasture.

GTAP-BIO-ADVFUEL (2011), modelling ILUC emissions due to secondgeneration biofuels, i.e. switchgrass-gasoline, miscanthus-gasoline etc.

Latest GTAP-BIO, improvements on the intensive margin (double cropping).

FTJ



Global LUC decomposition

- Net land required is equal to feedstock area expansion.
 - Driven by net energy yield
- In the USA, cropland pasture is the major source for cellulosic crop
 n expansion.
 - There is no CP in EU
 - More impact on trade
 - More emissions in ROW

FTJ

- As perennial crops, cellulosic crops entail high sequestration in soil and biomass
 - Miscanthus has the highest sequestration due to the high yield
 - Poplar has relatively lower sequestration in soil
- For EU miscanthus
 - Relatively more global deforestation compared with the US miscanthus FTJ