Rapid Fleet-wide Environmental Assessment Capability

ASCENT Project 11A

September 27, 2017

Project manager: Joe DiPardo, FAA

Principal investigators: Dr. John Hansman, MIT

Research Team: Luke Jensen, MIT Jacquie Thomas, MIT Greg O'Neill, MIT

This work is funded by the US Federal Aviation Administration (FAA) Office of Environment and Energy as a part of ASCENT Project 11 under FAA Award Number: 13-C-AJFE-MIT-006. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA or other ASCENT Sponsors.

Motivation

- Aviation environmental impact analysis involves flight-level and fleet-level:
 - Fuel burn
 - Emissions
 - Noise
 - Population impact
- Current aviation environmental impact analysis techniques (e.g. AEDT) are comprehensive but too slow for broad parametric analysis
 - Do not enable analysis of future aircraft types/technologies
- Need for rapid environmental assessment capability to inform and support policymaking and operational evaluation

Objectives

- Develop rapid models for environmental studies
 - Broad scenario explorations
 - Fast parametric analyses
- Key environmental impact dimensions
 - Noise
 - Fuel burn and emissions

• Initial Phase: Develop modeling architecture (complete)

- Develop local noise modeling techniques
- Integrate system-level impact models (i.e. DNL) with population impact models (i.e. population noise exposure) for policy evaluation

Current Phase: Application to sample problems

- Evaluate the impact of aircraft gauge change
- Aircraft fleet substitution and modernization at specific airports
- Extension to system-level analysis
- Ongoing work: integration with advanced noise modeling capability developed under ASCENT Project 23

Model Framework

Environmental Analysis Reference Problem: Aircraft Gauge Policy at DCA

- Initial sample problem chosen based
 on following criteria:
 - 1. Generate results at airports with nonstandard terminal procedures
 - 2. Demonstrate analysis capability for novel aircraft
- Aircraft gauge policy has potential impacts on:
 - Airport passenger capacity
 - Per-passenger environmental impact
- Rapid environmental analysis tool will be used to evaluate gaugechange scenarios
 - Noise
 - Fuel Burn
 - Emissions (e.g. CO_2 , NO_X)
- DCA chosen as particularly challenging case due to nonstandard procedures
- Airport-level analysis, system-level impacts may be examined in followon

Complex, non-standard procedures at DCA

Demonstrates novel aircraft evaluation capability

6

Aircraft Gauge Policy Scenarios

- Scenario 1: Fleet-wide Upgauge
 - Simple upgauge (by payload percentage) across all representative trajectories
 - Includes modeling of new representative upgauged aircraft types
- Scenario 2: Replace older aircraft types
 - MD-88 replaced one-forone with 737-800

Model Framework

Fleet Modeled in TASOPT/ANOPP

using TASOPT

Baseline and Upgauged

Model Framework

Defining Representative Trajectories

- Representative trajectories drastically reduce computation time but keep location-specific information
- Identify representative trajectories from RNAV routes
 - Filter ASDE-X historical radar track data data to find flights flying **RNAV** routes
 - Select flight closest to median
- Does not account for dispersion of flights
 - Noise impacts of flight track dispersion are currently under investigation DCA Departures

(20 Days from 2015 and 2016)

East-West distance (nmi)

Representative Trajectories

Representative Lateral Flight Tracks for DCA

Lateral trajectories derived from ASDE-X radar data and applied to all aircraft types:

4 Arrival Tracks

6 Departure Tracks

Vertical Profile Definition: Departure

Vertical profiles calculated based on radar data for each aircraft type

Departures:

- ICAO standard departure with thrust set to match median climb profile
 - Takeoff thrust and climb thrust set to match median radarbased initial climb rate
- Weight assumed to be 90% of MTOW
- Same percentage thrust and weight for upgauged aircraft

Attribute	Data Source
Drag	BADA 4
мтоw	TASOPT or BADA 4
Takeoff roll	ASDE-X data matching
Max thrust	Published data
V ₂	TASOPT

Vertical Profile Definition: Arrival

Vertical profiles calculated based on radar data for each aircraft type

Arrivals:

- Assume continuous 3-degree glide slope
 - Closely matches mean arrival profile
- Weight assumed to be 75% of MTOW
 - Consistent with most AEDT procedures
- Same percentage weight for upgauged aircraft

Attribute	Data Source
Drag	BADA 4
мтоw	TASOPT or BADA 4
Landing roll	ASDE-X data matching
Max thrust	Published data
V _{approach}	TASOPT

Thrust and Configuration Calculation

- Thrust and aircraft configuration required for noise and emissions analysis
- Radar records provide groundspeed only
 - Flap extension speeds obtained from BADA 4 performance files
 - Thrust calculated using kinematic approach and drag data from BADA or TASOPT
- Tool can also be used to design new trajectories and calculate thrust/performance

Example Trajectory 737-800, DCA Runway 1 RNAV Approach

Model Framework

Population Impact Calculation

- Single-event noise results (SEL and L_{MAX}) calculated on a consistent grid at same resolution as population densities (2010 US Census)
- Database of single-event grids can be rotated and combined to quickly form integrated noise contours (DNL and N_{ABOVE})

Census data re-gridded from irregular block form to regular 0.1nm square cells

Re-Gridded Population Density Map

Model Framework

2015 Schedule and Fleet for DCA

- Aircraft types assigned to representative model families for analysis
 - Reduces number of required single-flight runs
- Schedule source: ASPM singleflight records
 - Jan 1, 2015 to Dec 31, 2015
- Flights distributed evenly across arrival and departure routes with type-specific vertical profiles

2015 DCA Average Daily Schedule and Fleet

Type Code	Annual Arrivals	Representative Type	Average Daily Arrivals	
E170	28732			
E190	13399	E170	122 /	
CRJ7	3734	2170	132.4	
CRJ9	2455			
E135	222			
E145	2189			
E45X	1223			
CRJ2	28835	E1/1E	04.9	
DH8A	869	E145	54.0	
DH8D	586			
GA T-Prop	370			
GA Turbine	290			
A319	16658			
A320	6419	A320	65.9	
A321	985			
B733	193			
B737	15512	B728	82.6	
B738	14684	0730	05.0	
B739	117			
B752	814	B752	2.2	
B712	378			
MD82	22			
MD83	11	MD88	16.6	
MD88	2546			
MD90	3095			
Heli+Light GA	Omitted	Omitted	-	
Total			395.4	

Model Framework

Scenario 1: Fleet-wide Upgauge

					Nc
10% Frequency Increase			10% Inc	Nc	
	Sch	nedule	Scl	nedule	2
	Туре	Daily Count*	Туре	Daily Count	93
	E145	104.5	E145+	95	
	E170	145.2	E170+	132	y
	A320	72.6	A320+	66	Y
	B738	92.4	B738+	84	
	MD88	18.7	MD88+	17	
	B752	2.2	B752+	2	1

*Counts represent an average annual day, resulting in fractional operations

Metric	DNL		
Noise Model	AEDT		
Notes	Baseline Fleet with 10% Frequency Increase vs. 10% Aircraft Payload and Size Upgauge		
93 ysons 66 495 Annandale Springfield 95	Beseline with 10% Frequency Increase Noise Contours Pietwide 10% Upgauge Noise Contours Hyattsville 50 50 50 50 50 50 50 50 50 50		

Scenario 1: Fleet-wide Upgauge LTO Emissions

Example Single-Flight Departure: MD-80 vs. B738 L_{AMAX} Contours

Motivation for Scenario 3 (replacing older aircraft types):

On single-flight basis, MD-88 significantly louder than B738

Scenario 2: Replace Older Aircraft Types DNL

MD80 flights shifted to B738 flights

Base Scl	line 2015 nedule	N Repl Sc	ID-80 acement hedule
Туре	Daily Count	Туре	Daily Count
E145	95	E145	95
E170	132	E170	132
A320	66	A320	66
B738	84	B738	101
MD88	17	MD88	0
B752	2	B752	2

Metric	DNL
Noise Model	AEDT
Notes	Baseline Fleet vs. MD-80 Replacement Policy Passenger capacity larger for non-baseline

SYSTEM-LEVEL ANALYSIS

24

25

Simplified System Level Analysis: Method

- Objective: rapidly calculate nationwide population exposure at 65dB DNL for OEP 35 airports
- Simplifying assumptions for computational efficiency
 - Straight-in arrivals, straight-out departures
 - 12 Representative Fleet Types: A320 B77W B738 B744 B752 B753

	B/88	CRJ2	DH8D	E145	E1/0	MD88	
_	–	.					
2	2015	fleet	mix	and r	ันทพส	av	

- 2015 fleet mix and runway utilization data from FAA Aviation System Performance Metrics (ASPM)
- Noise results generated on same grid as population data, enabling rapid exposure assessment

Comparison with Published 65 DNL Contours

Contour Source: Draft 2016 LGA 14 CFR Part 150 Environmental Assessment

Comparison with Published 65 DNL Contours

Contour Source: Draft 2016 JFK 14 CFR Part 150 Environmental Assessment

Simplified System Level Analysis: Example Population Exposure Results (65 dB DNL)

65dB DNL Footprint vs. Geographic Extent of Noise Complaints

DNL Threshold Evaluation

Annual Average Day Complainant Coverage by DNL Contour Level

Contour Level	% Addresses Contained All Complainants	% Addresses Contained 33L Departure Complainants Only
45dB DNL	56.50%	54.21%
50dB DNL	18.58%	14.66%
55dB DNL	7.31%	8.05%
60dB DNL	3.40%	3.49%
65dB DNL	0.76%	0.12%

- 65dB DNL threshold captures almost no complainants
- In average day analysis, just over half of complainants are captured, which leaves a significant fraction of complainants unidentified

Comparison of Time Windows for DNL Computation

Figure 25: Annual Average Day DNL Contours

Figure 26: 33L Peak Day DNL Contours Figure 27: 33L Peak Hour DNL Contours

Table 19: 33L Departures Complainant Coverage forAll Scenarios by DNL Contour Level

Contour Level	Annual Average Day	33L Peak Day	33L Peak Hour
45dB DNL	54.21%	87.26%	93.39%
50dB DNL	14.66%	66.11%	88.94%
55dB DNL	8.05%	21.27%	74.04%
60dB DNL	3.49%	8.53%	30.05%
65dB DNL	0.12%	5.17%	9.38%

Red: < 30% captured Yellow: 30%-70% captured Green: > 70% captured

 Table 20: Contour Area and Population Exposure for All

 Scenarios by DNL Contour Level

Contour	Annual Average Day		33L Peak Day		33L Peak Hour		
Level	Contour Area (nmi ²)	Pop Exposure	Contour Area (nmi ²)	Pop Exposure	Contour Area (nmi ²)	Pop Exposure	
15dB DNL	107.43	554,679	114.80	879,087	236.90	1,345,823	
50dB DNL	47.88	198,862	51.54	443,925	98.30	795,659	
55dB DNL	20.28	61,017	21.86	153,988	43.44	384,738	
60dB DNL	7.99	19,852	9.18	49,200	18.24	131,671	
65dB DNL	3.38	1,568	3.76	17,640	7.94	50,955	31

Project Integration: ASCENT-11 and ASCENT-23

- Moving forward, Project 11 will merge with Project 23: "Analytical Approach for Quantifying Noise from Advanced Operational Procedures"
- Analysis architecture and tools will be integrated with those developed under Project 23
- System-level analysis framework will be applied to evaluate tradeoffs between noise reduction potential and procedure design criteria
 - Final approach segment length
 - Final approach intercept angle
 - Minimum leg length assumptions on arrivals and departures

PBN Criteria for RNAV and RNP Arrivals

Final approach TERPS criteria define final approach constraints

Assuming 3° glideslope

- A. RNP Approach
 - Min. final approach length: 1.57nm
- B. Nonprecision RNAV Approach
 - Min. final approach length: 2.9nm
 - Max intercept angle: 30°
- C. Precision RNAV Approach
 - Min. final approach length: 2.9nm
 - Max intercept angle: 15°

RNAV (GPS) Approach Runway 4R

Simulator Tested for Flyability

RNAV (GPS) Approach Runway 4R: Noise Results

Aircraft	B737-800
Metric	L _{A,MAX}
Noise Model	AEDT
Notes	Continuous Descent Approach on 3° Glideslope

Population Exposure (L_{MAX})

	60dB	65dB	70dB
Straight In	21,008	4,263	1,043
Modified Procedure	12,658	3,868	236
Reduction	8,350	395	807

Notional Low-Noise Overwater RNP: BOS Rwy 4R

4R Low-Noise Overwater RNP Approach: Noise Exposure

Aircraft	B737-800
Metric	L _{A,MAX}
Noise Model	AEDT
Notes	Continuous Descent Approach on 3° Glideslope

Population Exposure (L_{MAX})

	60dB	65dB	70dB
Straight In	21,008	4,263	1,043
Modified Procedure	5,905	1,389	161
Reduction	15,103	2,874	882

Project Status

- Analysis framework demonstrated on sample problem at DCA airport
 - Novel aircraft modeling
 - Operational fleet model development (timetable and fleet mix)
 - Representative trajectory calculation using historical radar data
 - Population exposure calculation and contour generation
- Simplified system-level analysis technique developed and demonstrated for OEP 35 airports
 - Assuming straight-in arrivals an straight-out departures, representative fleet of 12 aircraft types
- Next Steps
 - Analyze trade space of PBN approach criteria and noise reduction potential
 - Develop efficient method to represent non-standard procedures
 - Avoid straight-in and straight-out assumption
 - Capture effects of flight track dispersion