Investigation and Support of Integration of Departure Metering Concepts into Surface Capabilities Project 16

Lead investigators: Hamsa Balakrishnan (MIT) and Tom Reynolds (MIT LL)
Project managers: Chris Dorbian (FAA)

September 26-27, 2017 Alexandria, VA

Opinions, findings, conclusions and recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of ASCENT sponsor organizations.

Motivation

 Airport surface congestion leads to increased taxi times, fuel burn and emissions

- Potential to mitigate impacts through surface congestion management
 - Critical element of evolving surface traffic management tools
 - Needs to be effectively integrated into "gate-to-gate" traffic management, e.g. "3T integration" of Traffic Flow Management System (TFMS), Time-Based Flow Management (TBFM), and Terminal Flight Data Manager (TFDM)

Objectives

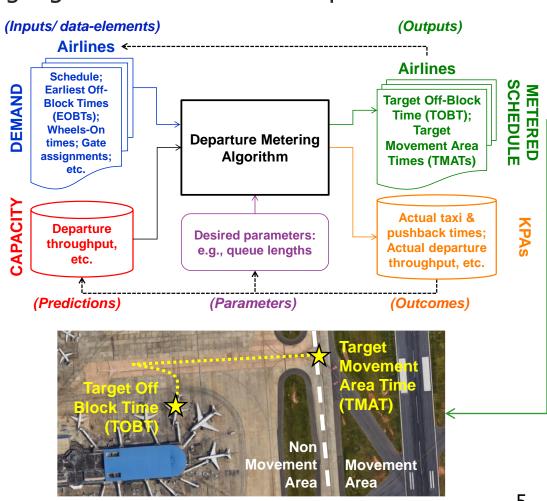
- Leverage experience on departure metering algorithm development, simulation and field test to:
 - Coordinate with related FAA & NASA programs
 - NASA ATD-2 activities at Charlotte Douglas Airport (CLT)
 - Multi-phase field demos starting this Fall to demonstrate integrated surface/terminal/en route concepts
 - Terminal Flight Data Manager (TFDM) deployment
 - RTCA NextGen Integrated Working Group Surface team
 - Surface-Collaborative Decision-Making (S-CDM)
 - Explore specific departure metering algorithms to support above activities
 - Investigate effect on departure metering algorithms of incorporation of S-CDM data elements (e.g., Earliest Off Block Time (EOBT) and gate information)

Outcomes and Practical Applications

Outcomes

- Guidance on operationally-realistic departure metering approaches to inform FAA, NASA and other stakeholders
- Estimates of potential benefits
- Insights into implementation barriers and future opportunities

Practical applications

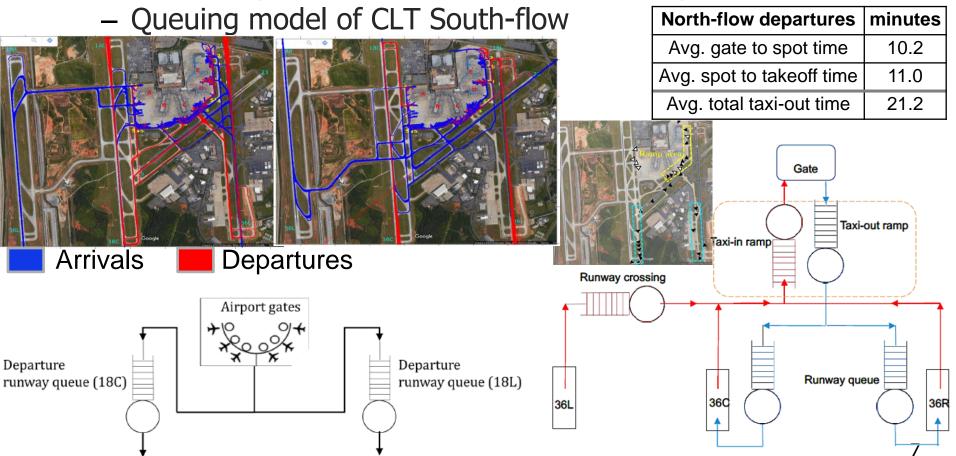

- Support of departure metering in S-CDM, TFDM, ATD-2, RTCA
 - Evaluate impact of uncertainty in availability and accuracy of various data elements (e.g., EOBTs, arrival demand, gate assignments, etc.)
 - Impact of increasing planning horizon
- Site adaptation of departure metering algorithms
 - Evaluate benefits/challenges for different airports/operating environments
 - Handling ramp operations (and mapping spot times to pushback times)

Approach

Exploring impact to S-CDM ConOps and estimated benefits of:

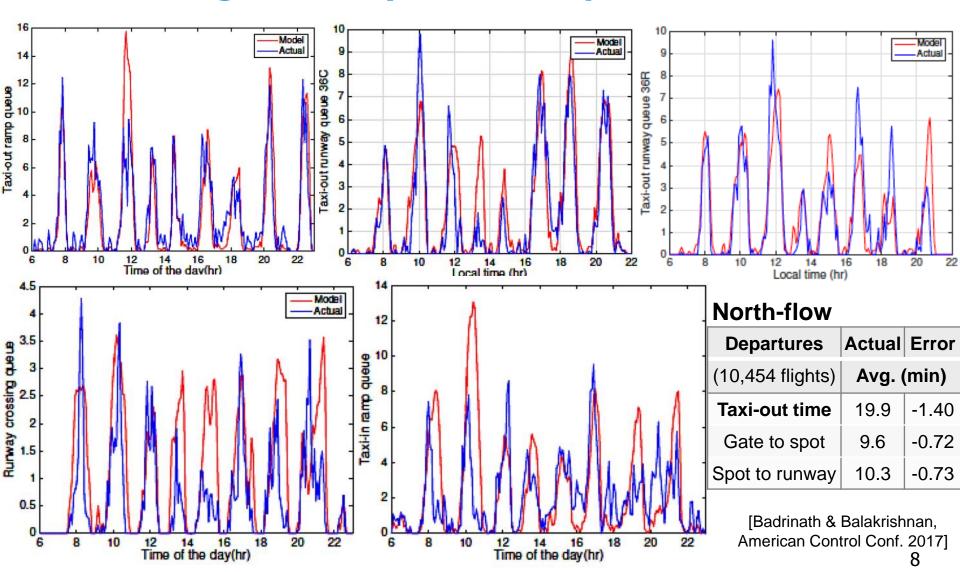
- Specific departure metering algorithms at different airports
 - Characterize airport dynamics with/ without metering
 - Conversion of TOBTs to TMATs for different non-movement area complexities
- Availability and quality of airline-derived data
 - E.g., EOBT, Gate information (departures and arrivals), etc.
- Synthesize findings and implications for relevant programs

Schedule and Status

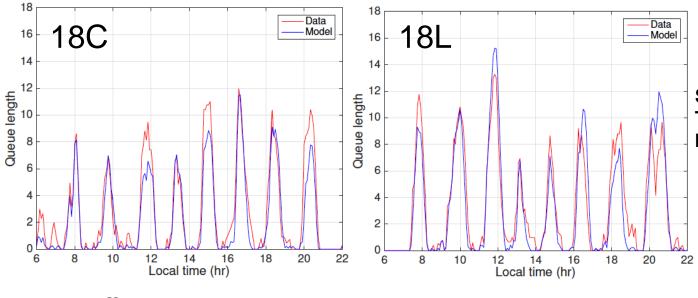

- Development & exercising of framework to simulate departure metering within S-CDM (complete)
- Adaptation of framework to CLT operations (on-going)
 - Alignment with NASA's ATD-2 demo, RTCA NIWG Surface goals
 - Spot and Runway Departure Advisor (SARDA)
- Analyzing quality of airline-derived data and impacts to departure metering programs (on-going)
- Synthesize findings and implications for NASA ATD-2 and FAA TFDM activities (on-going)

Recent Accomplishments (1)

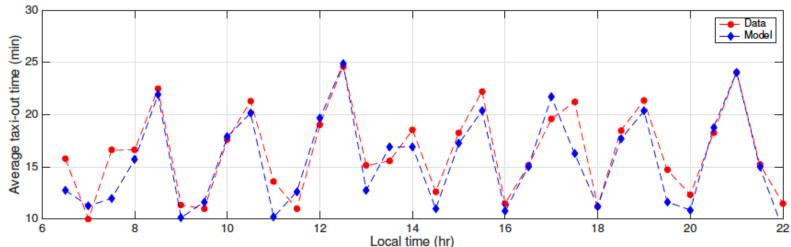
Modeling and analysis of CLT operations


- Consider gate-to-spot and spot-to-runway movements
- Tandem-queue model of CLT North-flow operations

Recent Accomplishments (1)


Modeling and analysis of CLT operations

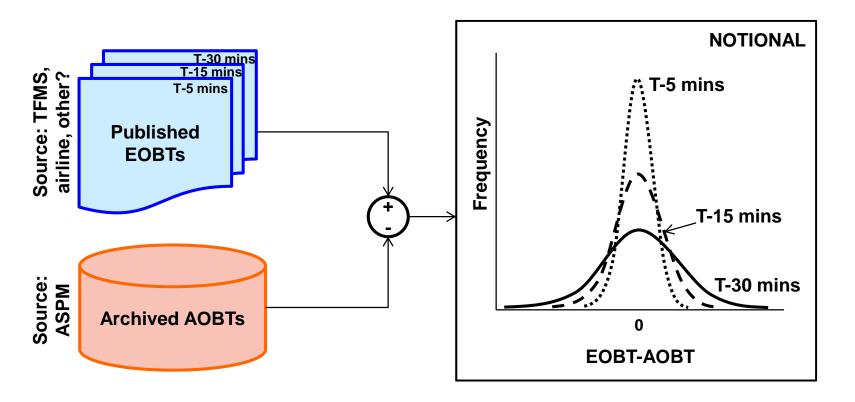
Recent Accomplishments (1)



Modeling and analysis of CLT operations

South-flow (30,911 flights)
Taxi-out time prediction
Mean taxi-out time: 18.4 min

Departures	(min)
Mean error	-2.1 min
Mean error	4.9 min
% in ±5 min	65%



Recent Accomplishments (2)

Analyzing impacts of airline-derived data

- Airlines beginning to publish Earliest Off-Block Time (EOBT) and gate information
- Assess EOBT compared to Actual_OBT (AOBT) as a function of:
 - Lookahead time, Airline, Airport (to compare CLT to others), etc.

Recent Accomplishments (3)

- Synthesize findings and implications for relevant programs
 - Holding regular coordination calls with project leads
 - Adapting program activities to provide highest value output
 - Example: non-movement area/movement area analysis to assist adaptation of ATD-2 CLT activities to other TFDM airports

Non-Movement Area Movement Area 1000 EN BOS OF OUR PET PET LITTER FON BO BY BY DE DE TO TO TOUR TIL TES

NMA/MA boundary

Interfaces and Communications

External

- S. Badrinath and H. Balakrishnan. "Control of a non-stationary tandem queue model of the airport surface," <u>American Control</u> Conference, Seattle, WA, May 2017.
- Ongoing/regular discussions with
 - NASA & American Airlines (regarding the ATD-2 demo at CLT)
 - NASA NRA on costs/benefits mechanisms for ATD-2
 - TFDM Program Office
 - RTCA NextGen Integrated Working Group surface team
 - FAA Surface Office (regarding S-CDM)

Summary

- Leverage experience on departure metering algorithm development, simulation and field test to:
 - Coordinate with related FAA & NASA programs
 - Explore specific departure metering algorithms to support above activities
 - Investigate effect on departure metering algorithms of incorporation of S-CDM data elements (e.g., EOBT and gate information)
- Adapting analysis priorities to maximize utility
- Synthesize findings and implications for NASA ATD-2 and FAA TFDM activities

References

- M. Sandberg, T. G. Reynolds, H. Khadilkar and H. Balakrishnan. "Airport Characterization for the Adaptation of Surface Congestion Management Approaches," ATM R&D Seminar, June 2013
- P. McFarlane and H. Balakrishnan. "Optimal Control of Airport Pushbacks in the Presence of Uncertainties," American Control Conference, June 2016
- S. Badrinath and H. Balakrishnan. "Control of a non-stationary tandem queue model of the airport surface," American Control Conference, Seattle, WA, May 2017

Contributors

- PIs: Hamsa Balakrishnan and Tom Reynolds
- MIT Lincoln Laboratory: Emily Clemons
- MIT Students: Sandeep Badrinath