## Alternative Fuels Test Database Library Project 33

Project manager: Cecilia Shaw, FAA

Lead investigator: Tonghun Lee, University of Illinois at Urbana-Champaign Co-Investigator: Steven Zabarnick, University of Dayton Research Institute

> September 26-27, 2017 Alexandria, VA

Opinions, findings, conclusions and recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of ASCENT sponsor organizations.



## **Project** Overview



### A foundational database of current and newly emerging alternative jet fuels

#### Year 3: 8/15/2016 to 8/14/2017

Lead PI: Tonghun Lee (University of Illinois Urbana-Champaign)

**Co-PI:** Steven Zabarnick (University of Dayton Research Institute)

Project Manager: Cecilia Shaw (Federal Aviation Administration)

#### **Advisory Committee:**

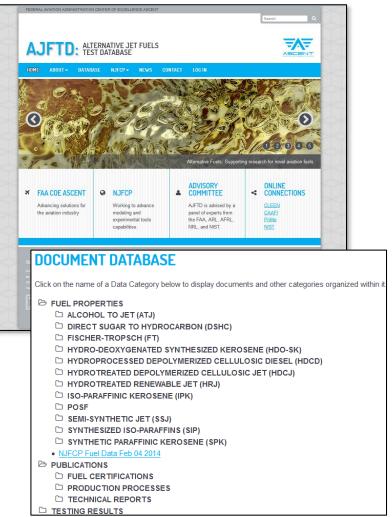
- Tim Edwards (Air Force Research Laboratory)
- Pamela Chu (National Institute of Standards & Technology)
- Robert Morris (Naval Research Laboratory)
- Mike Kweon (Army Research Laboratory)

#### Goals:

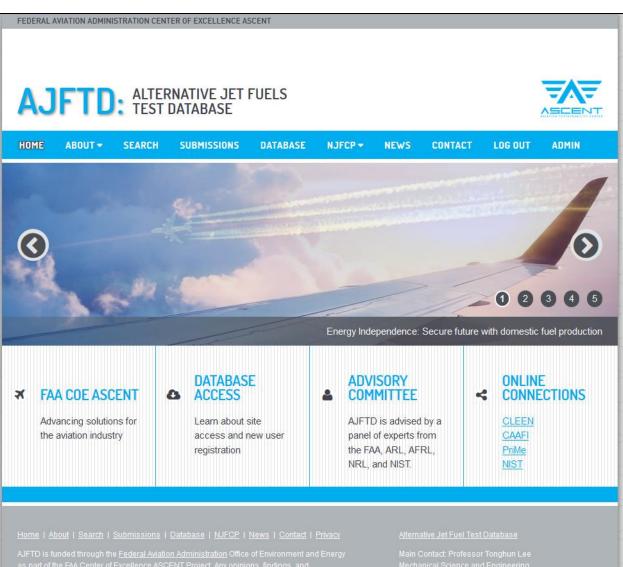
- **Compile data** on alternative jet fuels (AJF) in comprehensive and centralized knowledgebase
- **Support alternative fuels research** and fuel certification across academia, government, and industry
- *Increase accessibility* to AJF testing data and approval reporting

## Approach




| <ul> <li>Identify available data and select sources for use</li> <li>Collect scattered data (standardized reports, pre-existing database, research/reports from academia and industry)</li> </ul>                                                                 | Year 1 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| <ul> <li>Prioritize data retrieval and construct web portal</li> <li>Determine scope and range of data registry/web portal</li> <li>Develop interactive and intuitive cataloguing system</li> <li>Seed registry/database with initial data</li> </ul>             | Year 2 |
| <ul> <li>Optimize structure and analyze data</li> <li>Optimize overall database vision and standardized structure</li> <li>Leverage funded efforts: FAA ASCENT, FAA ASCENT NJFCP,</li> <li>Prepare comprehensive analysis of available data</li> </ul>            | Year 3 |
| <ul> <li>Enhance database features</li> <li>Provide updated AJF data via site fuel summary tool</li> <li>Evaluate fuel blending tools to support ASTM Generic Annex work</li> <li>Extend data to additional categories: GCxGC, emissions, rig testing,</li> </ul> | Year 4 |

## **Current AJFTD Database**




- Containing information on:
  - Fuel specification analyses
  - Technical papers
  - Fuel approval reports
- 400+ documents
  - Around 300 POSFs covering alt and conventional jet fuels
- Preparing fuel spec and variation analysis paper using AJFTD resources
- Looking to support ASTM Generic Annex through fuel blending tools and test data access
  - Evaluate fuel blend properties

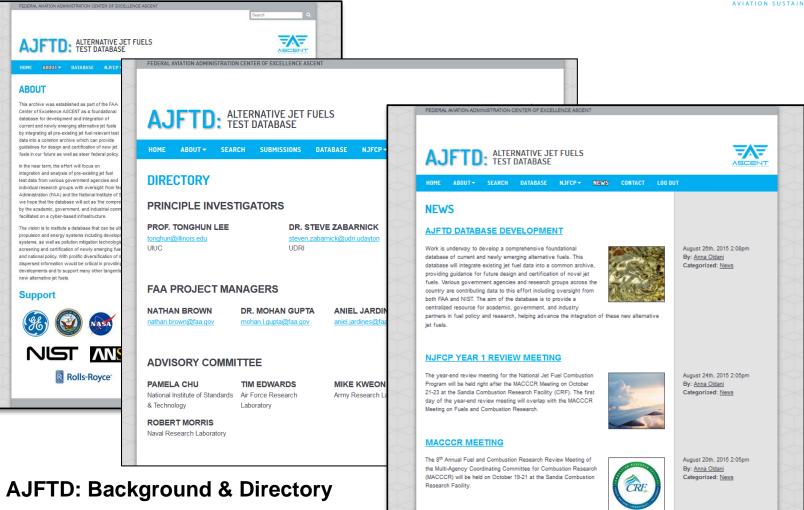
## altjetfuels.illinois.edu



## **AJFTD Web Portal**





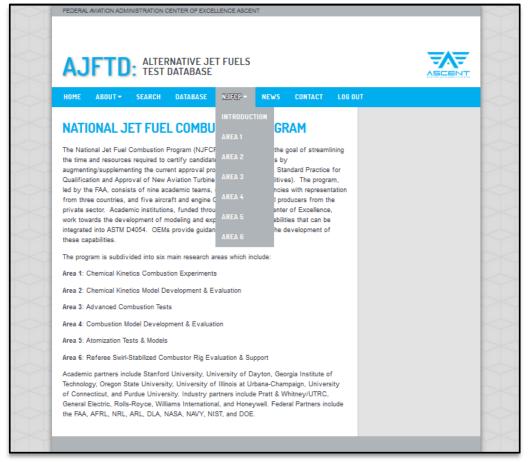

- Log-in requires authorization
- Data submission available for users
- Improved search result accessibility
- Comments can be left on data (community wide screening)

T TODT UNIVERSITY

Main Contact: Professor Tonghun Lee Mechanical Science and Engineering University of Illinois at Urbana-Champalgn 1206 W. Green Street Jrbana: IL 61801 Dhone: 517-200-8005

## **AJFTD Public Access**






#### **Relevant News & Updates**

# **AJFTD NJFCP Data Support**



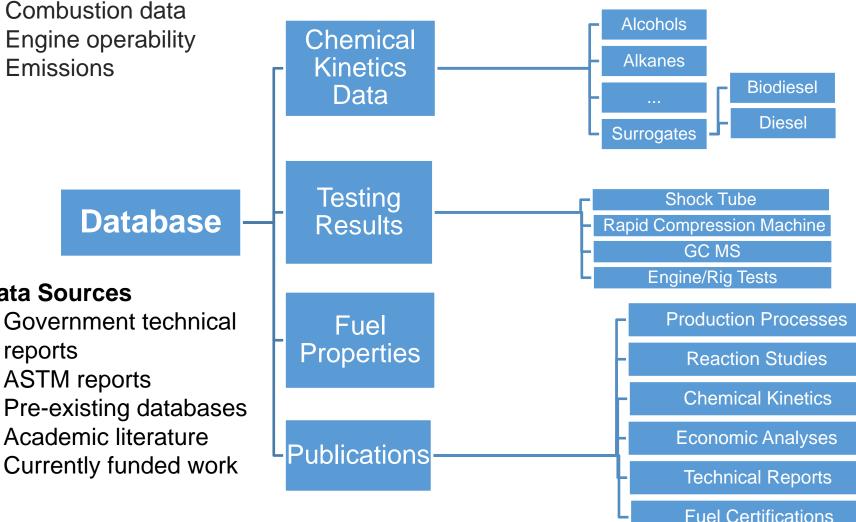
- AJFTD will provide route to make NJFCP data and documentation accessible
- Detailed under Data Management Plan (DMP) in compliance with Public Access Plan requirements
- To include:
  - Publications
  - Presentations
  - Data analysis results



# **Database Dropdown Organization**



#### Focus areas


- Fuel component data
- Combustion data
- Engine operability
- Emissions

**Data Sources** 

ASTM reports

reports

•



## **Database Search Functionalities**

EEDEDAL AVIATION ADMINISTRATION CENTER OF EVCELLENCE ACCENT



| AJFTD: ALTERNATIVE JET FUELS<br>TEST DATABASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | Search AJFTD Media: |                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------|---------------------------------------------------------------------------------------------------------------------------|
| HOME       ABOUT +       SEARCH       SUBMISSIONS       DATABASE       NJFCP +       NEWS       CONTACT       LOG OUT         DOCUMENT DATABASE         Click on the name of a Data Category below to display documents and other categories organized within it.         □       CHEMICAL KINETICS MECHANISMS                                                                                                                                                                                                                                                 | ADMIN |                     | elow to search our database. You can search using multipl<br>ed in last-name, first-name format (e.g. Public, John Q); ei |
| TEST RIG     PROPULSION AND POWER RAPID RESPONSE RESEARCH AND DEVELOPMENT (R&D) SUPPORT     US. AIR FORCE HYDROPROCESSED RENEWABLE JET (HRJ) FUEL RESEARCH      Mome   About   Search   Submissions   Dalabase   NJECP   News   Contad   Privacy      Alernative Jet Evel Test Database     Main Contact: Professor Tonghun Lee     matorial Science and Engineering     conclusions or recommendations expressed in this material are those of the authors and do     not necessarily reflect the views of the FAA or other ASCENT sponsors.     Write Street |       | Data Type: All      | Types •<br>Types •                                                                                                        |

- Familiar file folder breakdown to view all documents in relevant categories
- Database also accessible through basic or advanced search
  - Additional fields in advanced search:
    - Data Type: PDF, excel, .csv
    - Information Type: Publications, Data, Standards, Reports

## **Current POSF Data**



#### **DOCUMENT DATABASE**

Click on the name of a Data Category below to display documents and other categories organized within it

□ CHEMICAL KINETICS MECHANISMS

#### FUEL PROPERTIES

## POSF DATA 12223 4751

□ 4909□ 5033

5109

6152

6153

- **POSF 12223 DATA**
- Received: 01/05/2015
- Fuel Type: C14:1,3,5-Trimethyl-benzene (9405:10447) Blend
- Quantity: 475 gallon(s)
- Origin:
- Description: 84/16 Blend of POSF 9405 (C14) & POSF 10447 (1,3,5-Trimethyl-benzene)

Download Data:

POSF 12223 Fuel Properties 01/07/15

POSF 12223 Fuel Properties 01/27/15

POSF 12223 Net Heat of Combustion and Hydrogen Content

## • Fuel Types:

- Conventional (JP-8)
- Biojet, HEFA
- Blends
- IPK, SPK, F-T

|                                                                                                                                        |                             | AFPET LABORATORY REPO<br>AFPA/PTPLA<br>2430 C Street<br>Building 70, Area F<br>Wright-Patterson AFB, 0H 4 | 3 |     |                        |        |      |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------|---|-----|------------------------|--------|------|
| Lab Report No:2015<br>Cust Sample No:1222<br>JON: GENERAL FUND                                                                         |                             | Date Received:01/27/15 090<br>Date Reported:02/13/15 143                                                  |   |     | Sampled:<br>ocol:FU-AV |        |      |
| Sample Submitter:<br>AFRL/RQTF<br>Bldg 490<br>Wright-Patterson AF<br>Reason for Submissi<br>Product: Aviation T<br>Specification: MIL- | on: AFRL Re<br>urbine Fuel, | search                                                                                                    |   |     |                        |        |      |
|                                                                                                                                        |                             | Qty Submitted: 1 gal                                                                                      |   |     |                        |        |      |
| Method                                                                                                                                 | Test                        |                                                                                                           |   | Min | Max                    | Result | Fail |
| MIL-DTL-83133H w/Amd<br>2                                                                                                              | Workmanshi                  | g                                                                                                         |   |     |                        | Pas    | 38   |
| ASTM D 3242 - 11                                                                                                                       | Total Acid                  | Number (mg KOH/g)                                                                                         |   |     | 0.015                  | 0.00   | 02   |
| ASTM D 1319 - 14                                                                                                                       | Aromatics                   | (% vol)                                                                                                   |   |     | 25.0                   | 17.    | . 6  |
|                                                                                                                                        | Mercaptan<br>Distillati     | Sulfur (% mass)                                                                                           |   |     | 0.002                  | 0.00   | 00   |
| ASTM D 86 - 12                                                                                                                         | Distillati                  | on                                                                                                        |   |     |                        |        |      |
| ASTM D 86 - 12                                                                                                                         | Initial                     | on<br>Boiling Point (°C)<br>overed (°C)                                                                   |   |     |                        | 17     | 72   |

20% Recovered (°C)

50% Recovered (°C)

90% Recovered (°C)

End Point (°C)

Residue (% vol)

Density @ 15°C (kg/L)

Cetane Index, Calculated

Copper Strip Corrosion (2 h @ 100°C)

Loss (% vol)

Flash Point (°C)

Smoke Point (mm)

ASTM D 4052 - 11 Density @ 15 C (kg/l ASTM D 5972 - 05e1 Freezing Point (°C)

ASTM D 93 - 13e1

ASTM D 4052 - 11

ASTM D 976 - 06

ASTM D 130 - 12

(2011) ASTM D 1322 - 14 198

224

233

236

1.1

0.8 58

0.782

-45 X

61

1a

30.0

300

1.5

1.5

-47

0.840

Report Only

1 (Max)

38

0.775

25.0

# **Data Downloads Available**



## U.S. AIR FORCE HYDROPROCESSED RENEWABLE JET (HRJ) FUEL RESEARCH

Report Number: AFRL-RQ-WP-TR-2013-0108

This report summarizes the specification, fit-for-purpose, and rig test results for the purchased HRJ fuels, as well as data collected on other fuels to support Air Force to support ASTM Research Reports in support of HRJ commercial certification.

Download PDF

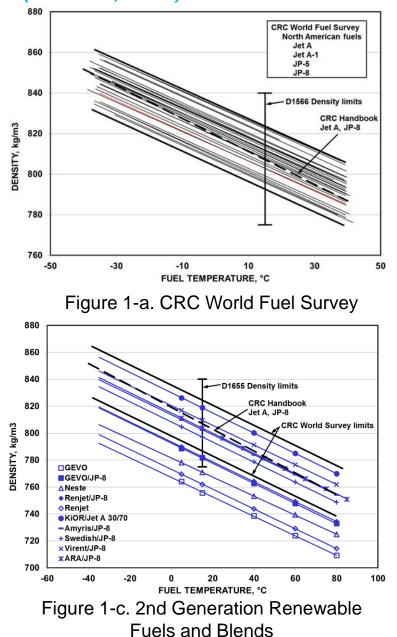
Download Tables

Keywords: alternative fuels, synthetic fuel, aircraft certification, airworthiness c certification, hydrotreated renewable iet, hrj, hydroprocessed esters and fatty a test results

**Discuss this Document** 

Enter your comment here...

- Formats include:
   PDF, DOC, XLS, TXT, DAT
- Extracted tables from PDFs available as XLS files


| ti<br>Ce | U.S.                    |                | R FO      | DRCE H         |                  |     |           |               |                |                | )-WP-7<br>D RENE |              |               |
|----------|-------------------------|----------------|-----------|----------------|------------------|-----|-----------|---------------|----------------|----------------|------------------|--------------|---------------|
| x∎       | 5.6                     | - <del>-</del> |           |                |                  |     |           |               |                |                |                  |              |               |
| FI       | LE HOME                 | INSER          | RT PA     | GE LAYOUT      | FORMULA          | S   | DAT       | TA F          | REVIE          | W VI           | EW               |              |               |
| e.       | 🖳 👗 Cut                 |                |           |                |                  | _   |           | 10            |                |                |                  |              |               |
|          | Copy -                  | 6              | Calibri   | * 11           | · A A            | Ξ   | =         | = %           | Ŧ              | 루 Wra          | ip Text          | Gener        | al            |
| as       | te                      | atar           | BIU       | • 🖽 • 🛛        | - <u>A</u> -     | ≡   | = :       | = (           | <del>)</del> = | 🖽 Mei          | rge & Center 👻   | \$ -         | %,            |
| Ŧ        |                         |                |           | Fant           | _                |     |           |               | 6 li n -       |                | _                |              | Na and to the |
|          | Clipboard               | 5              |           | Font           | F2               |     |           |               | Align          | ment           | Fa               |              | Numbe         |
| 2        | 8 👻 :                   | $\times$       | × .       | fx             |                  |     |           |               |                |                |                  |              |               |
|          | •                       | в              | с         | DE             | E G              | н   | 1         | 1             | к              | 1              | N                | ĊР           | CR            |
| 1        | POSF                    | в<br>6406      |           | D E<br>6184    | F G<br>5675      |     | 5674      | J<br>+        |                | 5673           | 5469 +           | C P          | CK            |
|          | 1051                    | + JP-8         |           | +JP-8          | + Jet-4          |     | Jet-A     |               |                | Jet-A          | Jet-A            |              |               |
|          | Feedstock               | Tallov         | v         | Camelina       | Cameli           | na  | Can       | nelina        | Ca             | melina         | R-8 Mixed        |              |               |
|          |                         |                |           |                | Jatroph<br>Algae |     |           | ropha<br>Igae |                | tropha<br>Maae | Fats             |              |               |
| İ        | Designation             | 50/50          | Blend     | 50/50 Blend    | CAL Ble          | nd  |           | Blend         |                | Z Blend        | 50/50 Blend      |              |               |
|          |                         |                |           |                |                  |     |           |               |                |                |                  |              |               |
|          | D1319 (vol %)           |                |           |                |                  |     |           |               |                |                |                  |              |               |
| ļ        | Aromatics               |                | 9.4       | 9              | 9.1              |     |           | 8.7           |                | 9.3            | 7.8              |              |               |
|          | Olefins                 |                | 1.3       | 0.9            | 0.5              |     |           | 0.7           |                | 0.7            | 0.5              |              |               |
|          | Saturates               | 8              | 9.3       | 90.1           | 90.4             |     | 90.6      |               | 90             |                | 91.7             |              |               |
| Í        | Table 7. Aromati        | ic Cont        | ent by D1 | 1319 for HRJ B | lends            |     |           |               |                |                |                  |              |               |
|          |                         |                |           |                |                  |     |           |               |                |                |                  |              |               |
|          | POSF                    |                | 6308      | 6152           | 4909             | 61  | <b>69</b> | 4751          | 5              | i470           | 7272             | 5469         |               |
| ĺ        | Feedstock               |                | Tallow    | Camelina       | Nat              | 1   |           |               | $\top$         |                |                  | Mixed        |               |
|          |                         |                |           |                | Gas              |     |           |               |                |                | Fats             | Fats         |               |
| ĺ        | Designation             |                | HRJ8      | HRJ8           | FT SPK           | JP  | -8        | JP-8          |                | IRJ8           |                  | HRJ8         |               |
|          |                         |                |           |                |                  |     |           |               | ľ              | ₹-8X           |                  | R-8<br>Pilot |               |
|          | D2425                   |                |           |                |                  |     |           |               |                |                |                  |              |               |
| ļ        | (volume %)<br>Paraffins | _              | 98        | 90             | 97               | 59  |           | 49            | -              | )6             | 98               | 91           |               |
| Į        | (normal + iso)          |                |           |                |                  |     |           |               | 3              |                |                  |              |               |
|          | Cycloparaffins          |                | 2         | 10             | 3                |     | 26        | 30            |                | 3              | -                | 9            |               |
|          | Alkylbenzenes           |                | <0.3      | <0.3           | <0.3             |     | 10        | 13            |                | ).5            |                  | 0.4          |               |
|          | Indans and Tetr         | alins          | <0.3      | <0.3           | <0.3             | 3.2 |           | 5.8           | <              | <0.3           | <0.3             | <0.3         |               |
|          | Indenes and C.I         | 28-10          | <0.3      | <0.3           | <0.35            | <0  |           | 0.6           |                | <0.3           | <0.3             | <0.3         |               |
|          | Naphthalene             |                | <0.3      | <0.3           | <0.3             | <0  | .3        | <0.3          | <              | <0.3           | <0.3             | <0.3         |               |
|          | Naphthalenes            |                | <0.3      | <0.3           | <0.3             | 1.1 |           | 1             |                | <0.35          | <0.3             | <0.3         |               |
|          | POSF                    |                | 6308      | 6152           | 4909             | 61  | <b>69</b> | 4751          |                |                | 7272             | 5469         |               |
|          | Acenaphthenes           |                | <0.3      | <0.3           | <0.3             | <0  | 3         | <0.3          | <              | <0.3           | <0.3             | <0.3         |               |
|          | Acenaphthylene          |                | <0.3      | <0.3           | <0.3             | <0  |           | <0.3          |                | <0.3           | <0.3             | <0.3         |               |
|          | Tricyclic Aroma         | tics           | <0.3      | <0.3           | <0.3             | <0  | 3         | <0.3          | <              | <0.3           | <0.3             | <0.3         |               |
|          | Total                   |                | 100       | 100            | 100              | 10  | 0         | 100           | 1              | 00             | 100              | 100          |               |
|          | Table 8. Hydroca        | rbon T         | ype Anal  | ysis by D2425  | for HRJs, F      | -TS | PK, a     | and JP-8      | s (v           | ol %)          |                  |              |               |
| ſ        |                         | 1              |           |                | 11               | 1 1 |           | 1             | 1 1            |                |                  |              |               |

## **Near Term AJFTD Extended Analysis**



- Specification review paper
  - Provide statistical analysis of variance of AJF data provided in D4054 FFP report
  - Develop property-temperature relationships for various fuel types
    - Generate specification property values ranges
  - Extend CRC WFS 2006 report with additional AJFTD data
    - Compare conventional fuels against AJFs for various specification requirements
- Support ASTM Generic Annex work for AJF blending
  - Desire to introduce AJFs at lower blending limits to streamline approval pipeline
  - Evaluate fuel blending prediction tools to check blend properties
    - NRL FCAST chemometric software

### Sample Data from D4054 FFP Report (C. Moses, 2015)



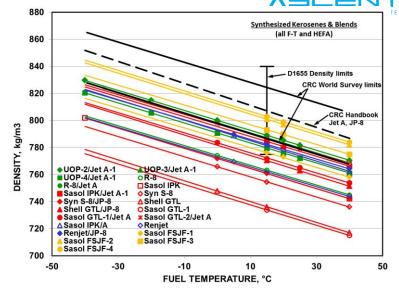



Figure 1-b. F-T and HEFA Fuels and Blends

 Conclude HCs have similar temperature dependence for evaluated properties independent of processing method

## **Property Data Analysis**

- Significant slope variance in all evaluated property categories except surface tension
  - Properties are still within allowable specification range
    - e.g. SKA density @ 15°C
      - 95% CI: 769.6 801.6 kg/m<sup>3</sup>
      - Spec requirements 755 800 kg/m<sup>3</sup>
- Equations can provide expected range of values for specification properties

| Fuel Property           | Fuel Types with<br>Significant Variance |
|-------------------------|-----------------------------------------|
| Density                 | SKA                                     |
| Isentropic Bulk Modulus | HEFA, FT                                |
| Specific Heat           | FT, FSJF                                |
| Speed of Sound          | HEFA                                    |
| Viscosity               | SKA, HEFA                               |

\*No thermal conductivity data for WFS fuels



| Density            | Equation          |
|--------------------|-------------------|
| WFS                | y=-0.7216x +815.5 |
| WFS w. light+heavy | y=-0.7225x +815.5 |
| FT                 | y=-0.7376x +777.7 |
| SKA                | y=-0.7439x +796.8 |
| Renewable          | y=-0.7419x +796.9 |
| HCs 1              | y=-0.8881x +826.9 |
| HCs 2              | y=-0.8651x +825.5 |
| CRC                | y=-0.7723x +817.7 |

| Surface Tension | Equation         |
|-----------------|------------------|
| WFS             | y=-0.0751x +27.4 |
| FT & HEFA       | y=-0.0741x +25.9 |
| SPK             | y=-0.0800x +25.9 |
| Renewables      | y=-0.0771x +26.7 |
| CRC             | y=-0.0443x +16.0 |

| Viscosity | Equation        |
|-----------|-----------------|
| FT        | y=2.999*0.9758x |
| SKA       | y=3.091*0.9815x |
| HEFA      | y=2.894*0.9777x |
| WFS       | y=2.849*0.9750x |
| 2nd Gen   | y=3.262*0.9708x |
| HCs       | y=1.850*0.9890x |

# **WFS and AJF Property Evaluation**



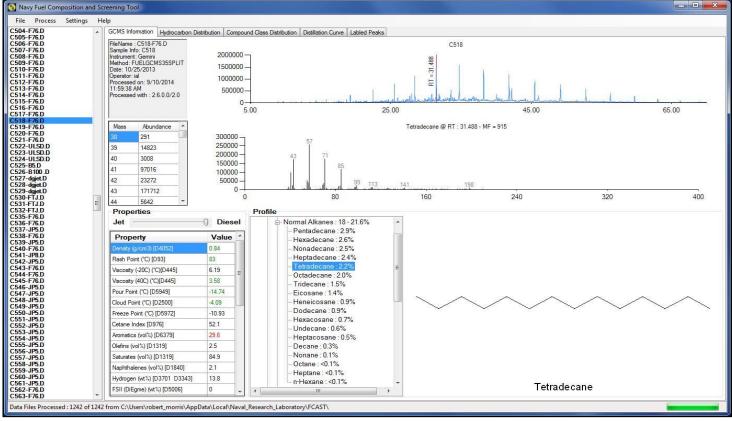
- Utilized AJFTD data to extend results from CRC WFS 2006 report
  - Obtained data for additional AJF POSFs used in ASTM approval reports to compare conventional and AJF specification properties



## **ASTM Generic Annex Proposal**



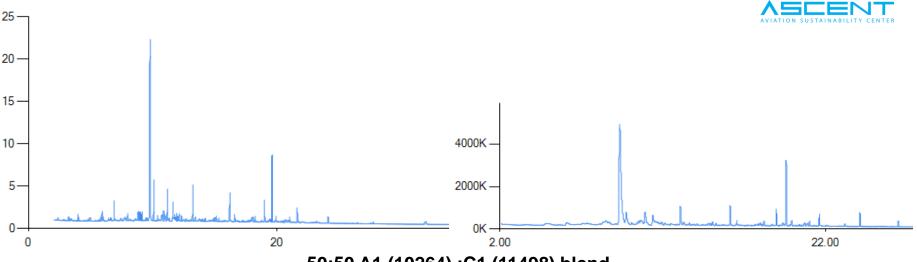
- Streamline certification process independent of resource processing based on composition and final blend
  - No prototype testing
  - Sets conservative limits AJF blend ratio (~10%)
- Provide confidence that blends are controlled on composition as compared to other annexes
  - Allows producers get closer to production much earlier and secure funding by reducing risks
  - Gives OEMs confidence new blends won't impact durability performance or safety
  - Saves time and resources for evaluating new fuels


## **Fuel Property Blending Tools**



- NRL FCAST: Navy Fuel Composition and Screening Tool
  - Developed to pre-screen new fuels
    - Utilizes PLS Regression analysis to establish statistical relationship between composition and critical FFP fuel properties
    - Predict analyzed fuel properties from GCxMS data
    - Individual compound abundance estimates
    - Carbon distribution of total fuel with class breakdown
  - Provides route to predict fuel properties of possible fuel blends
    - Developed to preserve robustness in presence of new, uncalibrated data – important for alternative fuels
    - Future adaptation to employ other data inputs (e.g. GCxGC data)

# **NRL FCAST**






# NRL FCAST (Fuel Composition & Screening Tool) Provides GCxMS interpretation and modeling tools:

- TICs
- Hydrocarbon compositional profiles
- Chemical structures of compounds present
- Relevant ASTM fuel specification property predictions

# **FCAST Blend Prediction Capabilities**

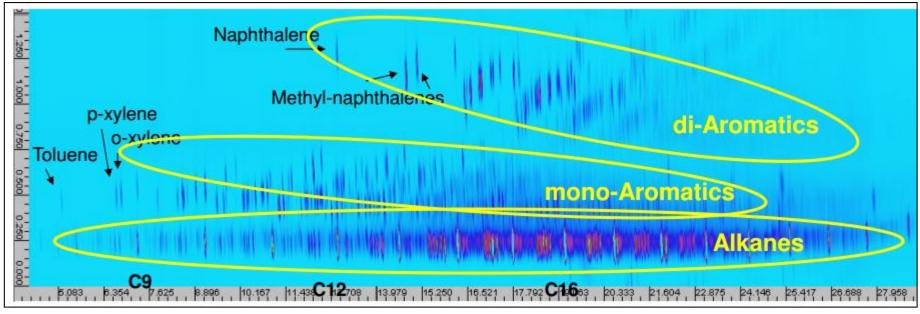


50:50 A1 (10264) :C1 (11498) blend calculated TIC (L), actual TIC (R)

- Calculated blend done by proportional blending of TIC profiles
- Generally <5% difference between calculated blend and actual blend predicted spec properties
  - FCAST provides ASTM relevant spec property predictions
- Can be used to support goals of ASTM Generic Annex for fuel blends

| <u>% Difference</u>       | 90:10 | 70:30 | 50:50  | 30:70 | 10:90 |  |
|---------------------------|-------|-------|--------|-------|-------|--|
| Density (g/cm3) [D4052]   | 1.19% | 0.48% | 0.00%  | 0.36% | 0.12% |  |
| Flash Point (°C) [D93]    | 4.90% | 2.01% | 8.79%  | 3.31% | 2.50% |  |
| Viscosity (-20°C) [D445]  | 4.83% | 4.09% | 3.01%  | 3.74% | 2.37% |  |
| Viscosity (40°C)[D445]    | 7.26% | 5.06% | 13.21% | 8.56% | 1.16% |  |
| Pour Point (°C) [D5949]   | 0.79% | 0.30% | 5.16%  | 2.29% | 0.71% |  |
| Cloud Point (°C) [D2500]  | 7.56% | 2.48% | 3.93%  | 2.71% | 4.72% |  |
| Freeze Point (°C) [D5972] | 0.72% | 0.57% | 3.76%  | 1.67% | 1.92% |  |
| Cetane Index [D976]       | 1.75% | 0.22% | 0.86%  | 0.22% | 0.00% |  |
| Aromatics (vol%) [D6379]  | 5.80% | 3.38% | 6.22%  | 1.95% | 0.47% |  |

## **GCxGC Fuel Analysis – Year 4**




- Two-dimensional gas chromatography
  - Pair of GC columns connected in series through a modulator
  - Provide more detailed fuel analysis than conventional GCxMS
- GCxGC data for AJFs supplied in ASTM approval reports for new fuels
- Efforts to formalize specification procedure to standardize methods across labs
  - Groups modify technique according to fuels tested and analytes of interest
- Generally used for HC type classification but can also be used for polar analyses and other impurities

## **GCxGC Fuel Analysis – Year 4**



- Analysis results can be reported:
  - Molecular types indexed to n-alkanes
  - Molecular type homologous series by carbon number
  - User specified resolved compounds or molecular type groups
- Image represents:
  - X-axis: retention time from primary column
  - Y-axis: retention time from secondary column
  - Coloring: FID signal intensity



GCxGC data for 7890A diesel fuel showing boiling point distribution and hydrocarbon class clusters

## **Future Work**



- Inclusion of new data areas
  - Emissions
  - GCxGC evaluate existing data from AFRL and other groups
  - Rig testing
  - Etc...
- Database enhancement
  - Fuel type summary tool generate updated testing results for various fuel categories
    - Increases user accessibility to view most recent AJF fuel property data
- ASTM Generic Annex support
  - FCAST and other tools for blend property predictions to support blending limits