

Motivation and Objectives

- Accurate modeling of performance is a key factor in estimating noise, emissions and fuel burn
- Various assumptions are made for aircraft performance modeling (APM) within the AEDT:
 - Aircraft takeoff weight
 - Takeoff thrust
 - Departure flight procedures

Practical Outcomes

Short term

- Assessment of current modeling assumptions within the APM
- Identify modeling gaps to real world flight
- Identify necessary flight data and analyze
- Sensitivity investigation of modeling assumptions
- Long term
 - Recommendations for new algorithm to mimic real world takeoff performance
 - Documentation of sensitivity analysis and implications of modifications to the APM

Task Plan/Schedule

- Task 1: Literature review completed
- Task 2: Statistical Analysis of Flight Data ongoing
- Task 3: Development of Aircraft State Estimators ongoing
- Task 4: Develop APM Enhancement lacksquareRecommendations – in refinement based on identification of new data
- Task 5: Implementation in progress ullet

Approach

- Take a partial derivative approach to understand the impact of each APM takeoff assumption
- Utilize High Fidelity Validation Data (HFVD) to validate new departure procedures within AEDT
- Identify possible implementation options along with \bullet level of effort and data requirements

Lead investigator: Dr. Michelle Kirby, Georgia Tech Project manager: Bill He, FAA

September 26-27, 2017

This work was funded by the US Federal Aviation Administration (FAA) Office of Environment and Energy as a part of ASCENT Project 45 under FAA Award Number 13-C-AJFE-GIT-020 and 035. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA or other ASCENT Sponsors.

Project 45 Takeoff/Climb Analysis to Support AEDT APM Development

Partial Derivative Approach to the APM

Step 1	 Baseline AEDT Standard departure procedures to determine current co
Step 2	 Project 35 weight with baseline AEDT Standard departure procedures Sensitivity to TO weight assumption
\setminus /	
Step 3	 AEDT weight with reduced thrust AEDT Standard departure procedures Sensitivity to TO thrust assumption
Step 4	 Project 35 weight with reduced thrust AEDT Standard departure proced Sensitivity to TO thrust and weight assumption
\backslash	
Step 5	 AEDT assumed weight and full thrust NADP 1 & 2 procedures Sensitivity to takeoff procedure at AEDT weight assumption
$\mathbf{\mathbf{N}}$	
Step 6	 Project 35 weight and full thrust NADP 1 & 2 procedures Sensitivity to takeoff procedure and correct TO weight from P35
$\mathbf{\mathbf{N}}$	
Step 7	 AEDT assumed weight and reduced thrust NADP 1 & 2 procedures Sensitivity to takeoff procedure and reduced thrust at AEDT weight ass
Step 8	 Project 35 weight and reduced thrust NADP 1 & 2 procedures Sensitivity to TO procedure, TO thrust, and correct TO weight from P3

Initial Recommendations

AEDT APM Assumption	AEDT vs Reality (What's the problem?)	Importance (Does it matter?)	Changes to AEDT (How?)	Potential Data Source (By how much?)
Weight	 AEDT uses Stage Length (SL) bins AEDT tends to underestimate GW by ~%5 for low SLs AEDT may overestimate GW for high SLs 	 Medium (-5 to +10%) difference in noise contour areas NOx and FB 	 Update the load factor (LF) assumption for each bin AND/OR Reduce the bin size OR Use a continuous function 	 IATA (GW) BTS (Payload) CAEP (LF) SAPOE Users
Departure Thrust	 AEDT uses 100% thrust Airlines uses reduced takeoff thrust when possible (~95% of the time) Typically limited at 25% reduction About 15% reduction on average, but can be as low as 40% 	 High (Up to 40+%) difference in noise contour areas NOx and FB 	 Change the thrust coefficients E for takeoff and climb in the THRUST_JET table Change all Acceleration segments into Percent Acceleration segments in the PROCEDURES table 	 IATA FLYAPG.com Project 35 Volpe Physics based calculations TTREAT Users
Departure Procedure	 Most aircraft in AEDT have STANDARD, ICAO-A, and B Procedures Airlines use NADP1 and 2 Procedures 	 Medium (1~10%) difference in noise contour areas NOx and FB 	 Rename the ICAO-A and B procedures to NADP1 and 2 Adjust the segment steps 	•IATA •ICAO PAN-OPS •ICAO 2007 NADP Survey

ontour area, fuel burn, and NOx
es
dures
sumption
35

Sensitivity to Takeoff Weight

takeoff weight per Project 35

- AEDT assumes a full power takeoff thrust.

Figure from ACRP 02-41 Technical Repor

5
<u>s</u> v
Pe
2 T
) 3

Sensitivity to Takeoff Procedure

FAA AC 91-53A and ICAO PANS OPS Chapter 3 Volume II recommend that all carriers adopt no more than two procedures for each aircraft type; one for noise abatement of communities close to the airport (NADP-1) and one for noise abatement of communities far from the airport (NADP-2) - Neither of these departure procedures are currently in AEDT

Sensitivity to All Assumptions

departure noise contour at the aircraft level

• AEDT assumes takeoff weights in bins, which tends to under predict actual

Sensitivity to Takeoff Thrust

Most aircraft takeoff with ~15% or more reduced thrust

Adjusting all of the takeoff assumptions has a significant impact on the

	NAD	^{30ав} 80ав р-1 РЗ5 W	eight RTT	500B	Solution of the second se	Standard A Weight H	EDT FTT)
20		Length (nmi)		Area (sq nmi)				
& RCLT	SEL dB	Standard FTT (AEDT Weight)	NADP-1 RTT (P35 Weight)	Diff	Standard FTT (AEDT Weight)	NADP-1 RTT (P35 Weight)	Diff	
	80	18.2	19.7	7.8%	11.1	10.3	-7.6%	
	85	10.8	12.2	12.1%	4.2	3.6	-15.8%	
	90	7.6	7.2	-5.9%	1.9	1.1	-64.4%	