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Project Overview 
Aircraft taxiing on the surface contribute significantly to fuel burn and emissions at airports.  The quantities of fuel burned 
as well as different pollutants such as carbon dioxide, hydrocarbons, nitrogen oxides, sulfur oxides and particulate matter 
are proportional to the taxi times of aircraft, in combination with other factors such as the throttle settings, number of 
engines that are powered, and pilot and airline decisions regarding engine shutdowns during delays. Domestic flights in the 
United States in 2008 emitted about 6.6 million US tons of CO2, 49,000 US tons of CO, 8,800 US tons of NOx, and 4,400 US 



 

 

 

tons of HC taxiing out for takeoff; almost half of these emissions occurred at the 20 most congested airports in the country. 
Similar trends have been noted at major airports in Europe, where it is estimated that aircraft spend 10-30% of their flight 
time taxiing, and that a short/medium range A320 expends as much as 5-10% of its fuel on the ground. The purpose of the 
Airport Surface Movement Optimization study is to show that a significant portion of these impacts can be reduced through 
“technologically-lightweight” operational measures to limit airport surface congestion. 
 
A simple airport congestion control strategy would be a pushback policy aimed at reducing congestion on the ground that 
would consider the situation on the airport surface (also called the state). The N-control strategy is one such approach, and 
was first considered in the Departure Planner project. Several variants of this policy have been studied since in literature. 
The policy is effectively a simple threshold heuristic: if the total number of departing aircraft on the ground exceeds a certain 
threshold, further pushbacks are stopped until the number of aircraft on the ground drops below the threshold. In our early 
analysis we discovered that this form of discrete, on-off control strategy was difficult to implement in practice, and could 
also be overly reactive, potentially leading to instability. By contrast, the pushback rate control strategy that we have 
developed and tested at Boston Logan International airport (BOS) does not stop pushbacks once the surface is in a congested 
state, instead it regulates the rate at which aircraft pushback from their gates during high departure demand periods so that 
the airport does not reach undesirably high congested states. This document summarizes the Phase 2 efforts, including site 
selection criteria and developing techniques for characterizing airport surface operations, in order to enable the adaptation 
of a given congestion management approach to different airports, and the comprehensive evaluation of implementations. 
 
As part of this project, MIT undertook an initial assessment of the applicability and potential benefits of "light-weight" airport-
wide surface management control concepts involving minimal levels of automation to complement other Federal Aviation 
Administration (FAA) surface congestion management programs. It involved defining and modeling surface management 
control schemes, implementing them in a field demonstration at Boston Logan International airport, and evaluating 
performance in terms of impacts on taxi time, fuel burn and environmental emissions. During 15 four-hour tests conducted 
during the summers of 2010 and 2011, fuel use was reduced by an estimated 23-25 US tons (6,600-7,300 US gallons), while 
carbon dioxide emissions were reduced by an estimated 71-79 US tons. These savings were achieved with average gate-
holds of just 4.7 min, and savings of 114-128 lb of fuel per gate-held flight. In addition to these savings achieved during 
field trials, many important lessons were learned regarding operational implementation of surface management techniques 
in both nominal and off-nominal conditions. 
 
Most prior research (including this project to date) has focused on demonstrations of a proposed congestion management 
approach at a particular airport, and not on the adaptation of a particular approach to a range of airport operating 
environments. The current focus of this project addresses the challenges involved with adapting any class of surface 
congestion management approaches to different airports. Data and case studies from New York’s LaGuardia Airport and 
Philadelphia International Airport are used to illustrate the diversity in operating environments. In particular, the MIT team 
has developed techniques for characterizing airport surface operations using site surveys and operational data.  These 
characterizations are used for the adaptation of a given congestion management approach to different airports, and for the 
comprehensive evaluation of implementations. 
 
 

Integration of Departure Metering Concepts into Surface Capabilities 
 
Objective(s) 
The objectives of this project are to conduct an initial assessment of the applicability and potential benefits of relatively easy-
to-implement airport-wide surface management control concepts involving minimal levels of automation and procedural 
modifications, to complement other FAA surface congestion management programs. Phase 1 involved defining and modeling 
surface management control schemes, implementing them in a field demonstration at Boston Logan International airport, 
and evaluating performance in terms of impacts on taxi time, fuel burn and environmental emissions. Phase 2, conducted 
during FY14 and 15, is exploring adaptation of the approach to other airport locations with very different operating 
characteristics to help understand and inform requirements for more general deployment in future FAA decision support 
tools.  
 
Research Approach 
 



 

 

 

Framework for adapting approaches to different operating environments 
 
This study has identified the overall process for designing a congestion management approach illustrated in Figure 1. The 
main steps involved in this process are: (1) Airport Selection, where an airport with surface congestion problems are 
identified; (2) Airport Characterization, where the details of the operation relevant to surface congestion management at 
an airport are identified; (3) Algorithm Development, where specific surface congestion management approaches are 
created; (4) Implementation Design, where the protocols of the execution of the algorithms are developed for the airport; 
and (5) Operational Testing and Performance Evaluation, where the approach is tested and evaluated in the operational 
setting. 
 

 
Figure 1. Overall design process for a congestion management approach. 
 
The airport selection step resulted in an analysis focus on LGA and PHL airports during Phase 2 activities. 
 
Framework for incorporating departure metering into Surface CDM 
 
Figure 2 presents a schematic of the S-CDM concept of operations, with a particular emphasis on the data elements 
required, and the outputs.  
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Figure 2. Simplified schematic of S-CDM ConOps, assuming availability of perfect data. 

 
 
In prior work, research team has developed and validated data-driven algorithms for determining the appropriate values of 
the desired departure queue length and the number of aircraft taxiing (the quantities shown in magenta), given tactical 
(i.e., 15-minutes ahead) estimates of the demand and operating conditions. The algorithms account for the 
variability/uncertainty in throughput (RDR/ADR) over the next 15-minute period.  
 
 
Departure metering using Pushback Rate Control strategies 
 
Two classes of Pushback Rate Control (PRC) strategies were developed and analyzed: (1) An N-Control policy, and (2) a 
more advanced dynamic programming based policy. N-control aims to maintain departing traffic around an acceptable 
value Nctrl based on empirical analysis of the relationship between departure throughput and active traffic, while dynamic 
programming seeks to minimize a cost function that penalizes both long queues and runway starvation by calculating the 
probability of the airport being in a certain state at some future time. Both approaches use predictions of the departure 
throughput in a time-window of interest by considering the runway configuration, weather conditions, and arrival demand 
using regression trees. Information on downstream restrictions is used for more accurate predictions of the operational 
throughput of an airport by leveraging the Route Availability Planning Tool (RAPT), an automated decision support tool that 
identifies departure routes that will be impacted by convective weather. Archived RAPT data can be used to predict the 
impact of route availability on the capacity of the airport. Regression trees are used to predict the departure throughput of 
LGA in each 15-minute interval as a function of arrival rate and a “RAPT value”, which is used to measure the level of route 
blockage in the departure airspace. 
 
N-Control based PRC: The N-Control policy considers the runway configuration, meteorological conditions, demand and 
RAPT forecast in a 15-minute period in order to determine the suggested pushback rate for that time period. A schematic 
of this process is shown in Figure 3. 



 

 

 

 
Figure 3. Adaptation of N-control to derive a PRC policy for LGA. 

 
Dynamic Programming based PRC: Dynamic programming can be used to determine PRC policies that control the 
departure pushback rate by minimizing a cost function that penalizes long runway queues and low runway utilization. For 
each time-window (say, 15 min) and given the current state of the system, a queuing model is used to predict the state of 
the system at the end of that time-window. A prediction of the departure throughput of the airport for that time-window 
(which in turn depends on the arrival rate of the airport) is required in order to predict the state of the airport. The 
dynamic program then determines an optimal pushback rate for the duration of the time-window. The dynamic 
programming policy has the benefit that it accommodates probabilistic predictions of throughput. Figure 4 illustrates such 
a policy derived for LGA.  

 
Figure 4. Dynamic programming based pushback rate policy for a time-window of 15 min. 

 
The dynamic programming policy contrasts with the N-control policy in the following manner. N-control uses a simple 
equation to maintain departure surface traffic at a predetermined level based on empirical data. Dynamic programming 
models the runway service time to get a probability distribution of the state of the airport at some point in the future. With 
this, and a cost of queuing and runway utilization function, dynamic programming finds the departure pushback rate that 
minimizes costs. While N-control predicts that the state of the airport surface will evolve in a certain manner, dynamic 
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programming considers all of the potential states of the airport and the departure pushback rate accounts for the 
uncertainty in the evolution of the state of the airport. From this perspective, the dynamic programming approach, while 
more complex than the N-Control based approach, is a more robust policy. In addition, while N-control is only in effect 
during times of significant congestion (N > Nctrl), the dynamic programming policy is always in effect. As a result, the 
dynamic programming based approach remedies even smaller (temporary) imbalances between throughput and demand, 
and results in greater taxi-out time reductions. 
 
Time windows and time horizons 
 
The PRC policies, N-control and dynamic programming, both generate a pushback rate for departures valid for a given time 
window. Historically, this time window has been set to 15 minutes, but varying this time window can lead to advantages 
and disadvantages. Also, a pushback rate can be calculated for earlier time windows in the future by changing the time 
horizon of the policy. Changing the time window or time horizon allows an airport or airline to tailor the PRC policy to 
specific needs and requirements. Consequently, stakeholders need to be aware of how varying these parameter values can 
affect the performance of PRC policies. Figure 5 illustrates the difference between time windows and time horizons. 
 

 
Figure 4. Visualization of time windows and time horizons. 

 
PRC policies calculate a pushback rate for departing aircraft that is valid for a certain time window. This time window impacts 
some performance characteristics of the policy. The length of this time window is a tradeoff between accuracy, ease of 
implementation, and value added to operators (airlines and air traffic controllers). For accuracy, the policies become less 
accurate as the length of the time window increases. Because the PRC policies calculate the pushback rate at the beginning 
of the time window based on the state of the airport surface, a longer time window means that the pushback rate is valid 
(recommended) for a longer period of time. As time gets farther away from the beginning of the window, the state of the 
airport surface changes relative to what was expected at the start of the time window, resulting in a decrease in metering 
performance.  
 
The time horizon is the number of time windows before a given time window that a departure rate is calculated. The time 
horizon length variation has similar tradeoffs to those associated with time window length variation.  Extending time windows 
or horizons reduces operator workload resulting from the policy, but prediction and data accuracy also decrease. Shortening 
time windows or horizons increases accuracy, but operator workload also increases due to short planning horizons. 
 
 
Impact of uncertainty 
The uncertainty associated with the throughput prediction increases if either the time window increases (say, to 30 min 
instead of 15 min), or if the time horizon increases (for example, planning for the time-windows that begin 15- or 30-min 
later instead of just at the current time). On the demand-side, arrival rate predictions may not be accurate, which will in turn 
increase the uncertainty associated with the predicted departure throughput. Similarly, departure demand may vary and 
aircraft may not push back at the times recommended by the pushback rate. 
 
 
Departure demand (EOBT) uncertainty 
Both N-control and dynamic programming rely on departure demand being ready for pushback in a given time window, as 
expected when determining the pushback rate. In the S-CDM context, this translates to an accurate knowledge of the 
Earliest Off-Block Times (EOBTs). If the available departures are less than the pushback rate, the departure surface traffic 



 

 

 

may fall below acceptable levels. If there are many available departures during a time of low congestion, those departures 
may cause congestion in the future. As such, PRC policies need to handle variability in departure demand. Such variability 
is modeled in simulations of LGA operations by assuming that the perturbations in the EOBT are drawn from a normal 
distribution with a mean of the published EOBT and a standard deviation of 3.5 minutes. The assumption of a standard 
deviation of 3.5 minutes ensures that two standard deviations from the expected EOBT approximately encompasses a 15-
minute time window. 
 
Arrival rate uncertainty 
The number of arrivals landing at an airport in a given time window is also uncertain. The scheduled arrival time of an 
aircraft changes due to many of the reasons that affect the scheduled departure time, including weather and congestion. 
Instead of scheduled arrival times, a tool called the Flight Status Monitor (FSM) forecasts the number of arrivals that will be 
ready to land for time windows into the future. The FAA’s Airport Arrival Demand Chart (AADC) is used as a surrogate for 
the arrival rate predictions from the FSM. Figure 5 shows an example of the AADC predictions for LGA. 
 
 

 
 
Figure 5. Airport Arrival Demand Chart for LGA on 3/12/2015. The bars indicate how many aircraft will be approaching 
LGA for landing during each 15-minute time window. 
 
 
With this information, the predicted arrivals for the next 15, 30, and 60 minutes can be extracted. If the predicted number 
of arrivals is above the capacity, the predicted arrivals is set to the capacity. The prediction accuracy analysis that follows 
establishes the perturbations for the variable arrival rate analysis. The AADC data was gathered over a four-month period 
from January-April 2015. Figure 6 shows the distribution of the difference between AADC arrival predictions and the actual 
arrivals for 15-minute windows. 



 

 

 

 
Figure 6. Predicted minus actual arrivals at LGA for the next 15-minute window. 

 
 
Simulations of departure metering under uncertainty 
 
Input data 
The data required for the simulation are extracted from multiple sources. The ASPM dataset provides flight-specific metrics 
such as pushback time, wheels off time, and wheels on time. Gate and terminal assignments allow for the calculation of 
unimpeded taxi-out times, and allow the policy to monitor gate conflicts. The simulations resolve all gate conflicts by clearing 
a departure to pushback (if its EOBT has passed) as soon as an arrival assigned to that gate has landed. The last dataset 
contains the weather data, RAPT, described previously. The simulations consider July and August 2013. 
Each simulation contains both a baseline case and two metering cases. The baseline case simulates the airport operations 
by releasing departures from their gates on a First-Come-First-Served (FCFS) basis based on their EOBTs (assumed to be the 
scheduled departure times with the appropriate perturbation). The metering cases simulate the airport operations using the 
N-Control and dynamic programming policies. The benefits of departure metering include the taxi-out time reduction, which 
is the difference between the taxi-out times in the baseline case and metering case. Taxi-out time reduction contrasts with 
gate holding time, which is the length of time an aircraft is held at a gate beyond the scheduled departure time due to the 
departure metering policy. Although aircraft still belong to the virtual queue with engines off, occupying the gate for longer 
periods of time causes more gate conflicts, and extended gate holding times after boarding can inconvenience passengers.  
 
Simulation results 
The results of the simulations are presented below. For each departure metering strategy, the plots show the resulting 
reduction in taxi-out time, namely, the difference between the baseline taxi-out time and the one under the metering 
policy. As mentioned earlier, comparing the results of the N-control and the dynamic programming based policy 
simulations highlights some of the differences between the algorithms. The absolute benefits of the dynamic programming 
policy are therefore much greater than the benefits of the N-control policy. However, this does not immediately indicate 
that dynamic programming is the better policy. Because the dynamic programming algorithm relies on an infinite horizon 
solution, the dynamic programming algorithm controls departures at all times, not just during times of congestion like the 
N-control policy. Therefore, the dynamic programming algorithm meters many more flights than the N-control algorithm. 
As a result, taxi-out time reductions are expected to be greater under the dynamic programming based policy.  



 

 

 

 

 
 

Figure 7. Total taxi-out reduction for the LGA time window simulations, under (left) N-Control, and (b) dynamic 
programming. Note that the y-axis scales are different in the two plots.  
 
Influence of time window length: Three time windows are investigated: 15-, 30- and 60-minutes. Figure 7 shows the taxi-
out time reductions under (left) N-Control, and (right) dynamic programming based PRC. As expected, it shows that the 
taxi-out time reduction relative to the baseline under the N-control policy  (for a time window of 15 min, and no further 
advance time horizon) is significantly more under the dynamic programming based policy than the N-control policy, for all 
three values of time window. The results show that the benefits decrease as the time window increases, since a single 
pushback rate is selected for the entire time window, even if the departure demand fluctuates within it. As a result, the 30-
minute time window simulation has 79% of the taxi-out time reduction of the 15-minute time window simulation, while the 
60-minute time window simulation has 55% of the taxi-out time reduction of the 15-minute time window simulation. 
However, even the longer time-windows exhibit considerable benefits, nearly 100,000 min with a 60 min time window over 
the two month period, using a dynamic programming based pushback rate control policy. 
The results show that the EOBT (departure demand) uncertainty has a larger effect on taxi-out reduction than does the 
arrival rate uncertainty. The overall uncertainty (both EOBT and arrival rate uncertainty) analysis results virtually match the 
EOBT uncertainty-alone analysis results for all time window lengths. While the 15-minute and 30-minute time window 
simulations have a decrease in taxi-out reduction due to the EOBT uncertainty, the 60-minute time window simulation has 
a slight increase in taxi-out reduction. This increase may be due to the spreading out of the departure demand through 
perturbations, which could result in more flights being metered than initially planned. 
Influence of time horizon length: Three time windows were investigated, each with a time window of 15-min. They 
corresponded to no look ahead (i.e., the pushback rate is determined only for the immediately next 15-minute period), 1 
time window look ahead (i.e., a pushback rate was determined for the 15-minute interval that was 15-30 minutes from the 
current time), and a 3 time window look ahead (i.e., a pushback rate was determined for the 15-minute interval that was 
45-60 minutes from the current time). These results, shown in Figure 8, are similar to the results for time window variation 
shown in Figure 7. 



 

 

 

 
 
Figure 7. Total taxi-out reduction for the LGA time horizon simulations, under (left) N-Control, and (b) dynamic 
programming. Note that the y-axis scales are different in the two plots. 
 
The results show that the departure schedule uncertainty has a larger effect on policy benefits than does the arrival rate 
uncertainty. For both N-control and dynamic programming, the departure schedule uncertainty has less of a negative 
influence on the results as the time window length increases. In fact, for the 60-minute time window dynamic 
programming simulation, the departure schedule uncertainty slightly increases the taxi-out reduction. For the time horizon 
simulations, the influence of each uncertainty remains proportional to the policy benefits with no uncertainty. The arrival 
rate uncertainty has very little effect on taxi-out reduction for any simulation. 
 
Next Steps and Timeline 
 
Ongoing work consists largely of further refining the proposed framework to support the integration of departure metering 
with NextGen surface management capabilities. Pursuant to the recent FAA decision to address the RTCA NextGen 
Integrated Working Group (NIWG) surface team departure metering recommendation with a field demonstration by NASA at 
Charlotte (CLT) Douglas airport, the research team has been extending the methodologies to CLT, in order to support the 
ATD-2 demonstration. The team had previously analyzed CLT as part of the site selection task for Phase 2, and also 
investigated the impacts of the new runway at CLT that became operational in 2011. In particular, discussions with the 
NASA benefits analysis team lead for the CLT activity has highlighted strong interest in getting a better understanding of 
departure metering benefits estimates, particularly with the Spot and Runway Departure Advisor (SARDA) algorithm 
coupled into an S-CDM-compliant architecture, and the framework proposed in this research can enable that. NASA is also 
concerned with the impact to benefits of uncertainties (e.g., in EOBTs, in departure sequencing times, in gaps in the 
airspace, etc.) as a function of different look ahead times, similar to the analysis presented in this document. 
As the capability is being refined, the team is also coordinating with the TFDM program office and the Surface Operations 
Office to ensure maximum impact from the N-Control activities. TFDM will be the FAA’s primary acquisition program to 
deliver surface capabilities. The results of these studies were briefed to the TFDM Investment Analysis Team (IAT) to assist 
with the validation of potential benefits from their departure metering capability. 
 

Milestone(s) 
• Site selection                     [Complete] 
• Framework to adapt departure metering concepts to different operating environments [Complete]  
• Protocol design for LGA and refinement (multiple)           [Complete] 
• Initial stakeholder engagement                 [Complete] 
• Modeling and simulation of departure metering at LGA                   [Complete] 
• Modeling and simulation of departure metering at PHL           [Complete] 



 

 

 

• Engagement/coordination with TFDM benefits analysis                [Ongoing] 
• Investigation of benefits of incorporation of S-CDM data elements (e.g. EOBT)         [Ongoing] 
• Identification of most appropriate departure metering algorithm for different airports and [Ongoing]  

operating conditions and levels of uncertainty/ data accuracy (CLT adaptation) 
• Coordination with Advanced Surface Management Programs         [Ongoing] 

 
 

Publications 
 
Peer-reviewed conference publications: 
P. McFarlane and H. Balakrishnan. “Optimal Control of Airport Pushbacks in the Presence of Uncertainties,” American Control 
Conference, July 2016. 
 

Outreach Efforts 
 
N/A 
 

Student Involvement 
  
Patrick McFarlane. Modeling and simulation of PHL operations as well as uncertainty analysis. Graduated with Masters 
degree in February 2016 and currently employed at MITRE. 
 
Sandeep Badrinath, currently a graduate student at MIT. Analysis and control of queuing network models of airport 
operations.  
 

Plans for Next Period 
 
Task 1: Investigate effect on departure metering algorithms/benefits of incorporation of S-CDM data elements (e.g., EOBT, 
gate information, etc) 
 
Task 2: Investigate most appropriate departure metering algorithm for different types of airports and operating 
conditions. Focus on CLT ramp operations. 
 
Task 3: Determine what metrics should be collected to assess and refine strategic and tactical departure metering 
performance. 
 
Task 4: Coordination with Advanced Surface Management Programs (S-CDM and TFDM) 
 
 
 
 
 


