

Motivation and Objectives

Motivation

Studying health effects of aircraft noise is important in policy models, but few U.S. studies exist.

Objectives

- Evaluate associations between aircraft noise and cardiovascular outcomes.
- Estimate population attributable risk. Specific: Evaluate associations between aircraft noise and risk (incidence) of hypertension.

Project Methods and Materials

- Leverage data from the Nurses' Health Studies (NHS and NHS II) and Health Professionals' Follow-up Study (HPFS) – longitudinal cohorts. Key attributes:

 - Large sample size and geographic distribution. • Individual data on traditional cardiovascular disease.
 - Systematically ascertained, physician-reviewed and adjudicated outcomes.
- Assign noise exposure to geocoded address over time.
 - Develop noise levels in multiple metrics, out to DNL 45 dB.
 - Calculate noise exposures at participant addresses over time.

Project Progress

- Assigned longitudinal aircraft noise exposure \bullet (DNL) to geocoded addresses.
- Performed analysis investigating DNL aircraft noise and self-report of hypertension.
- Converting additional noise metrics into useable format.

Lead investigator: J. Peters, Boston University SPH Project managers: N. Sizov & M. Marsan, FAA October 9-10, 2018

Project 03 Cardiovascular Disease & Aircraft Noise Exposure

Results (Hypertension)

Population Characteristics

- Nurses' Health Study (NHS): 121,700 married women, aged 30-55 years, for the follow-up period 1994-2007
- NHS II:
- 116,430 women, aged 25-42 years, for the follow-up period 1995-2006
- Outcome
- Self-reported hypertension (validation study showed high accuracy)
- **Inclusion Criteria**
- No diagnosed hypertension at baseline.
- No missing noise or air pollution data.
- Statistics
- Time-varying Cox proportional hazards model - accounts for changes in exposure time
- Noise exposure levels were categorized (DNL > 44, > 50, > 55, and > 60 dB)
- Adjusted for:
 - Medication use, race, region, smoking Ο value, air pollution, BMI, alcohol latitude, diabetes status

Figure 1. DNL distribution at baseline for NHS II

(updated addresses) and risk factors over

history, area-level income, area-level housing consumption, diet, menopausal status, family history of hypertension, physical activity,

Similar results were observed for NHS.

Discussion

- significant.
- NHS II, respectively.

Next Steps

Key Barrier (Project)

This work was funded by the US Federal Aviation Administration (FAA) Office of Environment and Energy as a part of ASCENT Project 3 under FAA Award Number: 13-C-AJFE-BU. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA or other ASCENT Sponsors.

Conclusions

Incidence of hypertension increased with increased DNL, but statistically non-

Very few nurses exposed to >65 db; 0.1% and 0.2% exposed to >60 dB in NHS and

• Test associations of incident hypertension with L_{ea}-day and L_{ea}-night Perform analysis in male cohort (HPFS) Perform meta-analysis with the three cohorts (NHS, NHS II and HPFS) • Converting noise data into useable formats