

# Project 18 Community Measurements of Aviation Emissions Contribution to Ambient Air Quality



#### Motivation

Multiple studies have identified aircraft arrival emissions as a contributor to ultrafine particulate matter (UFP), but it is unclear whether the findings are interpretable or robust (i.e., due to longer averaging times, a lack of real-time flight activity data, and no connection with aircraft plume dynamics).

# **Objectives**

- Conduct ambient monitoring of UFP measured as particle number concentration (PNC) at sites with varying proximity to landing and take-off (LTO) flight paths:
  - 2017 Focus on arrivals to KBOS on runway 4R/4L.
  - 2018 Focus on multiple LTO flight paths.

#### **Methods and Materials – Site Selection**

 Sites were chosen to be >200 m from major roadways, at varying distances from the airport and flight paths (Fig. 1).

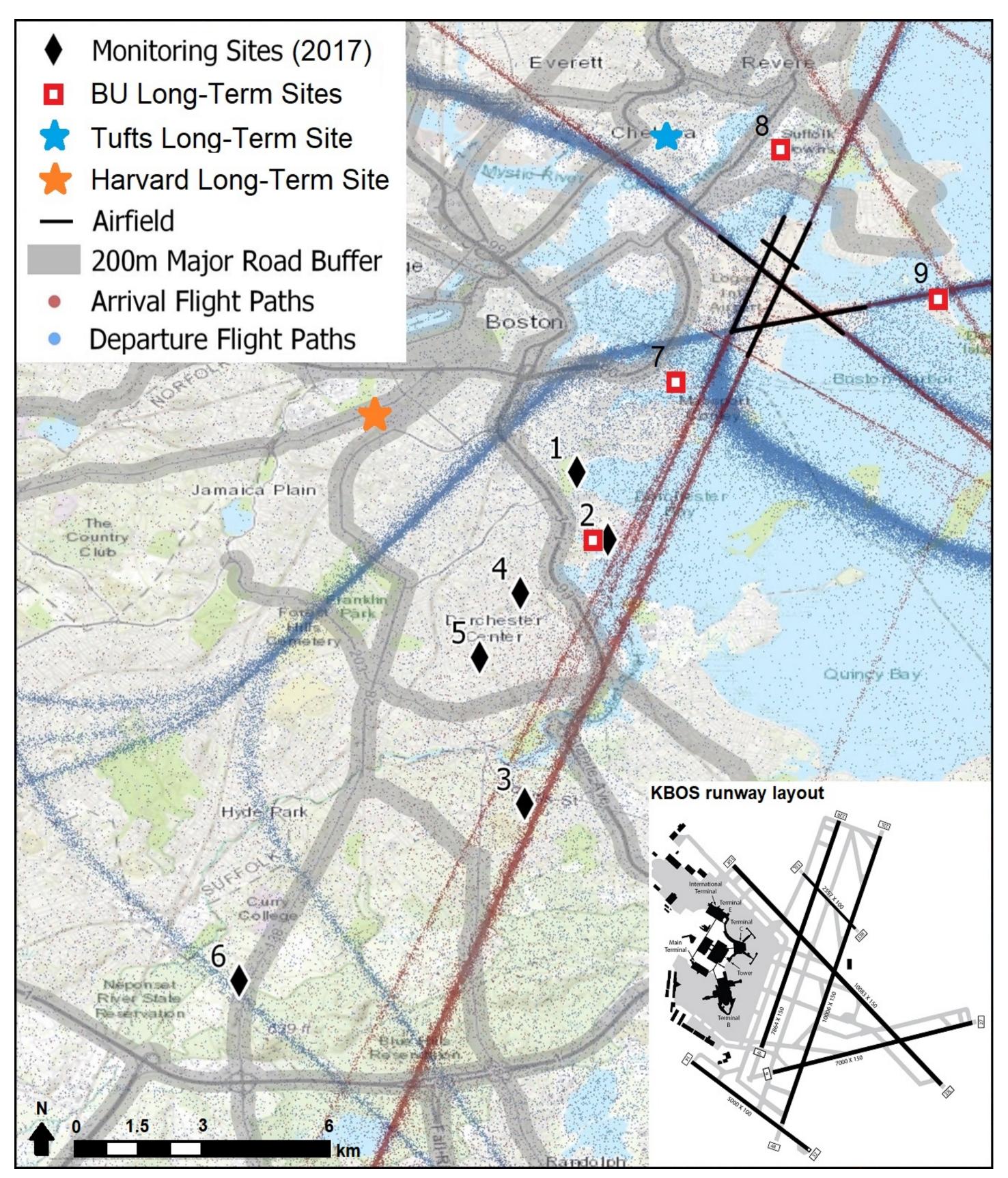



Figure 1. Map of monitoring sites, flight paths, and runway configurations.

### **Results and Analysis**

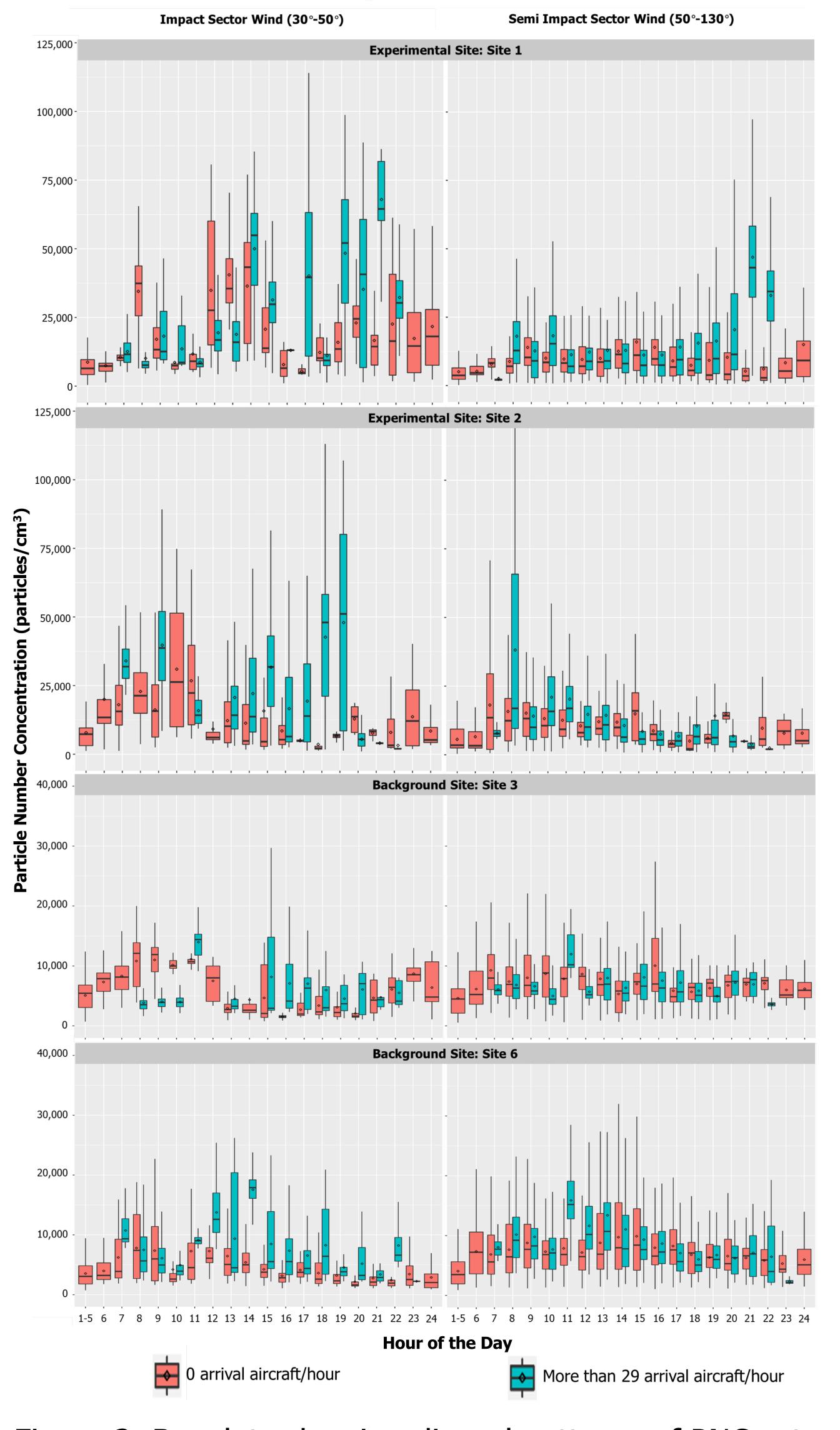



Figure 2. Boxplots showing diurnal patterns of PNCs at Sites 1, 2, 3 and 6 under two different wind sectors stratified by 4R/4L arrival flight activity conditions.

Lead investigator: K. Lane, Boston University School of Public Health
Project manager: J. Upadhyay, FAA
October 9-10, 2018

This work was funded by the US Federal Aviation Administration (FAA) Office of Environment and Energy as a part of ASCENT Project 18 under FAA Award Number 13-C-AJFE-BU. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA or other ASCENT Sponsors.

Table 1. PNC distribution at air monitoring sites (2017).

|                         | Site 1                | Site 2  | Site 3                | Site 4  | Site 5 | Site 6 |
|-------------------------|-----------------------|---------|-----------------------|---------|--------|--------|
| Sample Size (days)      | 67                    | 71      | 57                    | 61      | 57     | 62     |
| Location                | 2 <sup>nd</sup> Floor | Ground  | 2 <sup>nd</sup> Floor | Ground  | Ground | Ground |
| Nearest<br>Runway       | 4R                    | 4R      | 4R                    | 4R      | 4R     | 4R     |
| Distance to Runway (km) | 4.0                   | 4.9     | 10.8                  | 6.7     | 8.2    | 16.6   |
| 0.1st PCTL              | 800                   | 1,100   | 1,600                 | 2,500   | 2,000  | 1,800  |
| 1st PCTL                | 1,000                 | 2,900   | 2,500                 | 5,100   | 2,900  | 2,500  |
| 5th PCTL                | 4,300                 | 5,800   | 4,300                 | 8,200   | 5,700  | 4,300  |
| 50th PCTL               | 14,100                | 16, 600 | 11,600                | 20,600  | 17,100 | 12,000 |
| 95th PCTL               | 55,600                | 63,000  | 28,000                | 67,900  | 47,100 | 31,400 |
| 99th PCTL               | 116,800               | 119,200 | 47,400                | 103,200 | 70,700 | 50,500 |
| 99.9th PCTL             | 180,200               | 206,600 | 87,500                | 150,800 | 96,500 | 95,800 |
|                         |                       |         |                       |         |        |        |

Table 2. PNC distribution at air monitoring sites (2018).

|                         | Site 2 | Tufts Site                   | Site 7                       | Site 8                |
|-------------------------|--------|------------------------------|------------------------------|-----------------------|
| Sample Size (days)      | 264    | 250                          | 123                          | 167                   |
| Location                | Ground | 3 <sup>rd</sup> Floor (roof) | 5 <sup>th</sup> Floor (roof) | 2 <sup>nd</sup> Floor |
| Nearest Runway          | 4R     | 15R                          | 4R                           | 22R                   |
| Distance to Runway (km) | 4.9    | 2.4                          | 2.8                          | 1.6                   |
| 0.1st PCTL              | 500    | 1,000                        | 600                          | 700                   |
| 1st PCTL                | 700    | 1,770                        | 1,200                        | 1,300                 |
| 5 <sup>th</sup> PCTL    | 1,200  | 3,300                        | 2,600                        | 2,300                 |
| 50 <sup>th</sup> PCTL   | 7,600  | 11,900                       | 8,300                        | 10,800                |
| 95 <sup>th</sup> PCTL   | 24,600 | 43,700                       | 36,300                       | 60,900                |
| 99th PCTL               | 47,500 | 87,800                       | 66,200                       | 120,000               |
| 99.9th PCTL             | 77,100 | 152,000                      | 99,200                       | 230,000               |

## **Conclusions and Next Steps**

- This project provided novel insight regarding the magnitude of arrival aircraft contributions relative to background PNCs.
- Data structure is suitable for regression modeling that can capture the varying impact of arrival aircraft on local PNCs under different meteorological conditions.
- Data collected at KBOS will be used to develop and compare source attribution estimates with dispersion modeling outputs to inform UFP modelling for other airports.