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Tool: APMT-IC

• Aviation is estimated to cause 
o 2% of the global 

anthropogenic CO2 
emissions

o 5% of the global 
anthropogenic radiative 
forcing

• Impact is expected to 
increase

• Working towards publication of reduced order cost metrics to 
evaluate trade-off of climate and air quality damages

• Investigate appropriateness of enhancing spatial resolution of 
physical impacts in APMT-IC.

• Re-asses model sensitivity to uncertainty distributions as well as 
convergence characteristics after last set of model updates.

5% Projected Growth

Agreement for Carbon Neutral 
Growth from 2020

Adapted from ICAO

Project 021

Improving Climate Policy 
Analysis Tools 

• Tools to quantify current and future climate impacts of 
aviation required

• APMT-Impacts Climate is a reduced order climate 
modeling tool, which has been developed for this purpose. 
Most recently:
o Additional pathways for CH4 and N2O added
o Damage function to capture US based climate damages 

implemented

Motivation Results and Comparison to Literature
• Methane (CH4) and nitrous oxide (N2O) are powerful greenhouse 

gases.
• Biofuel production results in emission of both CH4 and N2O. 
• Their climate impact significantly alter biofuel life cycle analysis. 

(Stratton et al. 2011)

Source: Stratton et al. (2011)
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APMT-ICN2O Impact 
Pathway

Direct 
Warming 
Impact
Timescale 
≈120 years

CH4 Impact Pathway

Indirect Warming: CH4 Products
CH4 + OH → H2O + CH3

Direct Warming Impact
Timescale ≈12 years

Stratospheric water vapor

Eventually forms CO2

If reaction occurs in the 
presence of NOx, O3 is produced
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Chemistry Background

Approach
Concentration is modeled using first-order atmospheric lifetimes and 
a convolution approach. 
N2O: 𝜏_perturb= 121 yr (+/- 15.3) (IPCC, AR5) including 3 year delay 

for N2O to reach its stratospheric sink (Meinshausen et al., 2011).
CH4: 𝜏_perturb= 12.4 yr (+/- 2.3) (IPCC, AR5)

Background concentrations from RCP data.

Direct Radiative Forcing (Etminan et al. 2016)

𝑅𝐹𝑁2𝑂 = 𝑎2 ҧ𝐶 + 𝑏2 ഥ𝑁 + 𝑐2 ഥ𝑀 + 0.117 × 𝑁 − 𝑁0 *

𝑅𝐹𝐶𝐻4 = 𝑎3 ഥ𝑀 + 𝑏3 ഥ𝑁 + 0.043 × 𝑀 − 𝑀0 *

𝑅𝐹𝐶𝑂2 = 𝑎1 𝐶 − 𝐶0 + 𝑏1 𝐶 − 𝐶0 + 𝑐1 ഥ𝑁 + 5.36 × ln 𝐶/𝐶0
where 𝐶, 𝑀, and 𝑁 denote concentration of CO2, CH4, and N2O 
respectively. 𝐶0, 𝑀0, and 𝑁0 denote initial concentrations and bar 
indicates average between initial and present ( ത𝑋 = 0.5 𝑋 + 𝑋0 ). 
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Indirect Methane Radiative Forcing

Stratospheric H2O

RF1 = 𝛽𝛼(𝐶𝐶𝐻4 + 𝐶𝐶𝐻4
0 )

• 𝛽 = 0.15
• 𝛼 = 0.036
• 𝐶𝐶𝐻4

0 = 722 +/− 25

ppb

• 71% uncertainty

Tropospheric Ozone

RF = 𝛼 𝑆𝐶𝐻4Δ ln(𝐶𝐶𝐻4)

• 𝛼 = 0.0335
• 𝑆𝐶𝐻4 = 5

• 𝐶𝐶𝐻4
0 = 722 +/− 25

ppb
• 55% uncertainty

CO2 Effect

• Conserve of C atoms

• CH4 → CO2.

• Only apply when CH4

is from fossil fuel 

sources

• 50% uncertainty
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Motivation and Approach Implementation NotesUS Damage Function 

Damage function:
𝐷 = 0.283Δ𝑇 + 0.146Δ𝑇2

(%GDP)

• It should be noted, unified assumptions cannot be guaranteed 
between the global damages and the US-only damages (“top-
down” vs “bottom-up” approach). As such APMT-IC should 
not be used to conclude US based damages is a certain 
percentage of global damages. 

• In addition, it should be noted, that the US based damages 
implemented do not include economic spill over effects from 
damages outside of the US. 
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APMT-IC v24b-Beta
(Global, DICE 2017)

$84 $55 $40 $15 $8.3 $103

APMT-IC v24b-Beta
(US Only, Hsiang et al. 2017)

$6.6 $4.4 $3.0 $1.3 $0.76 $7.2

Social Cost of Carbon for Emissions in 2015 on RCP4.5 Mid ($/1tonne CO2 in 2007 USD)

• Regionally differences in rainfall, temperature, and income are 
expected to lead to spatially heterogeneous climate damages. 

• Inadequate agreement of top-down regionalized distribution of 
global damages. (Nordhaus, 2017)

• Bottom-up damage function for damages in the US only 
developed by Hsiang et al. (2017)

Property Crime (% Change) Violent Crime(% Change) Total Direct Damages 
(% County GDP)

Low-risk labor (% Change) High-risk labor(% Change) Coastal damage (% County GDP)

Agricultural yields (% Change) Mortality (Change in deaths/100k) Energy Expenditures (% Change)

US Damage Function 

• Where Δ𝑇 represents 

Global Mean Surface 
Temperature change. 

• Δ𝑇 is w.r.t. 1980-

2010

Uncertainty:
5th to 95th percentile as 
percentage of GDP
• At 1.5°C: −0.1 to 1.7%
• At 4°C: 1.5 to 5.6% 
• At 8°C: 6.4 to 15.7%

DICE 2017 and Hsiang et al. 
(2017) Comparison

Cost Breakdown Damage Function
• SSP include US GDP scenarios. We verified whether low, mid, and 

high damage scenarios remain the same for global and US GDP.
• Hsiang et al. (2017) only includes uncertainty at discreet 

temperatures. Curve fit was applied to find uncertainty at all 
temperatures.

• APMT-IC computes temperature change relative to preindustrial. Using 
MAGICC6, temperature difference between preindustrial and 1980-

2010 was calculated as 0.58 °C. 

Calculated Social Cost of Carbon


