FAA CENTER OF EXCELLENCE FOR ALTERNATIVE JET FUELS & ENVIRONMENT

Evaluation of FAA Climate Tools Project 22

Lead investigator: Donald Wuebbles, University of Illinois at Urbana-Champaign Project manager: Daniel Jacob, FAA

> October 9 & 10, 2018 Alexandria, VA

Opinions, findings, conclusions and recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of ASCENT sponsor organizations.

- This ASCENT project is part of the Aviation Climate Change Research (CCR) Consortium Effort.
- FAA simple climate tool APMT is undergoing a new evolution to include representation of climate effects on a zonal (latitude) basis and to consider regional effects.

 FAA wants to establish regional analyses of aviation emissions to address policy questions and potential policymaking.

Why focus on regional effects from aviation emissions?

Previous studies:

- focused on globallyaveraged aviation effects on climate
- Little information on the spatial variability of the effects.
- Metrics largely use global emission data whereas the impact scale of most emissions is local to hemispheric.

LOSI	Scale	RF/RF _{CO2}	mWm ⁻²		RF Terms
High	Global	1.00	23.0		Carbon dioxide
Med -Low	Continental to hemispheric	1.28	29.5		Short-term ozone
Med -Low	Global	-0.50	-11.5		Methane reduction
Med -Low	Global	0.78	18.0		Net NOx
Low	Hemispheric to global	0.07	1.7		Water vapor
Low	Local to global	-0.21	-4.8	H	SO ₄ aerosol direct
Low	Local to global	0.03	0.8		BC aerosol direct
Low	Local to continental	0.29	6.6		Linear contrails
Low	Local to hemispheric	1.36	31.2		Contrail cirrus
Low	Global	1.97	45.3		Total aviation w/o contrail cirrus
Low	Global	3.04	69.9		Total aviation

Why focus on regional effects from aviation emissions?

Long-lived

Forcing agent	NH	SH	NH/SH	Global	LEE2009
CH₄	[-8.0, -12.3]	[-8.0, -12.3]	I	[-8.0, -12.3]	[-2.1, -76.2]
O, long	[-4.0, -4.7]	[-4.0, -4.7]	I	[-4.2, -4.5]	—
O ₃ short	[10.3, 63.6]	[2.0, 24.1]	[5, 3]	[6.0, 36.5]	[8.4, 82.3]
SO₄ direct	[-5.5, -11.8]	[-0.5, -1.5]	[11, 8]	[-3.0, -7.0]	[-0.79, -29.3]
Nitrate direct	[-11.6]	[-4.2]	[3]	[-4.0, -7.5]	_
BC direct	[1.2, 1.9]	[0.1, 0.2]	[12, 10]	[0.6, 1.0]	[0.56, 20.7]
LCs				[2.9, 11.3]	[5.4, 25.6]
Contrail cirrus	[24.0, 95.0]	[0.7, 5.0]	[34, 19]	[12.4, 51.3]	[12.5, 86.7]

Short-lived

- Spatial variability is found to be particularly important for the aviation sector. (Lund et al., 2012)
- Forcing over local regions much greater than globally-averaged values, and the associated temperature change is more heterogeneous.

Long-term objectives

- Further enhance the overall understanding of aviation impacts on climate
- Studies to explore the regional climate impacts from aircraft emissions.
- Evaluate the capabilities, limitations, and uncertainties of climate metrics and simple models (e.g., APMT) to aid policy decisions.

□ Near term objective

FAA would like to have estimates of regional temperature change due to global aviation emissions

Determine ΔT over United States, Europe, and East Asia

Outcomes and Practical Applications

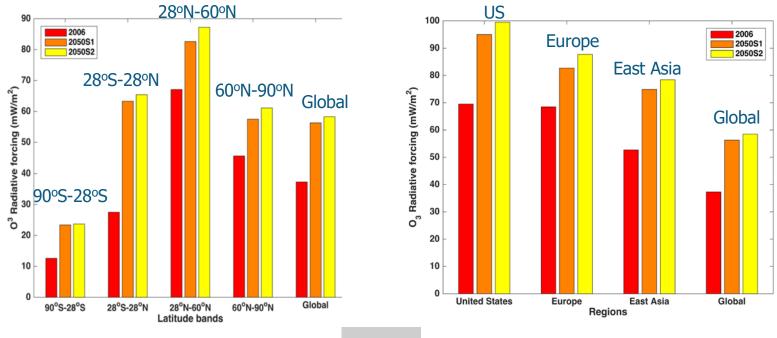
• Outcomes

- Biweekly telecons with FAA
- Quarterly reports to FAA
- Annual report summarizing progress
- Presentations and participation in CCR and ASCENT meetings, AGU and other conference

Practical applications

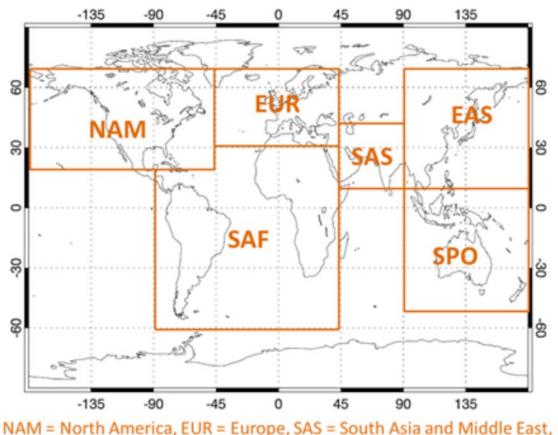
- Extend the understanding of aviation effects on climate and evaluating a simplified model to address policy questions
- Analyses are useful to the FAA, to ICAO, and to the aviation industry

Regional analyses of climate effect for aviation emissions


- State-of-the art modeling capabilities (CAM version of CESM: CAM-Chem5)
- Conduct simulations with different emissions as well as their combinations, from aviation emissions to explore the gas and particle separate and combined effects on regional climate.
- Derive temperature response over four latitude bands using CICERO approach, and explore possible way to derive temperature change over regions.

Previous Accomplishments and Contributions

Our previous analysis (reported at last ASCENT meeting):


Calculated the radiative forcing over latitude bands and regions induced from global aviation emissions.

CICERO Approach

CICERO took such analyses one step further by calculating the latitudinal band temperature change accounting for localized regional sources

EAS = East Asia, SAF = South America and Africa, SPO = South Pacific Ocean

Six source regions

CICERO approach calculates the temperature change over four latitude bands due to six emission source regions

 ΔT over

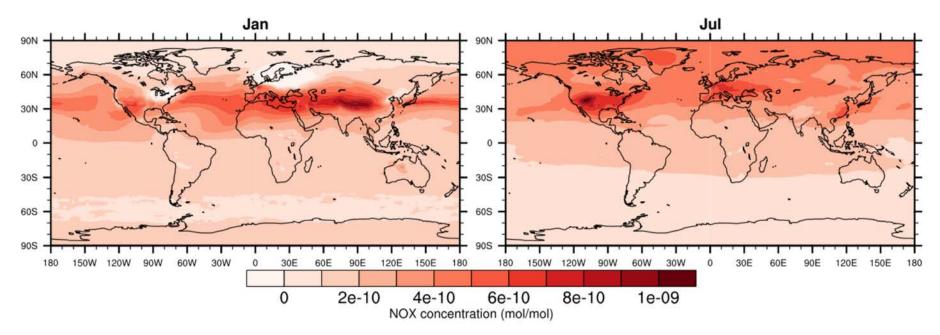
- $90^{\circ}S 28^{\circ}S$,
- 28°S 28°N,
- 28°N 60°N,
- 60°N 90°N

CICERO Approach

- Uses regional climate sensitivity (RCS) and impulse response functions as bridges from forcing to response.
- Considerations in using CICERO approach to calculate temperature change over regions
 - Our model simulations can determine regional RF
 - RCS is important to determine the amount of temperature response induced from RF
 - To get temperature change over regions, RCS over corresponding regions are needed
 - Make assumptions based on RCS over latitude bands to get RCS over interested regions

Schedule and Status

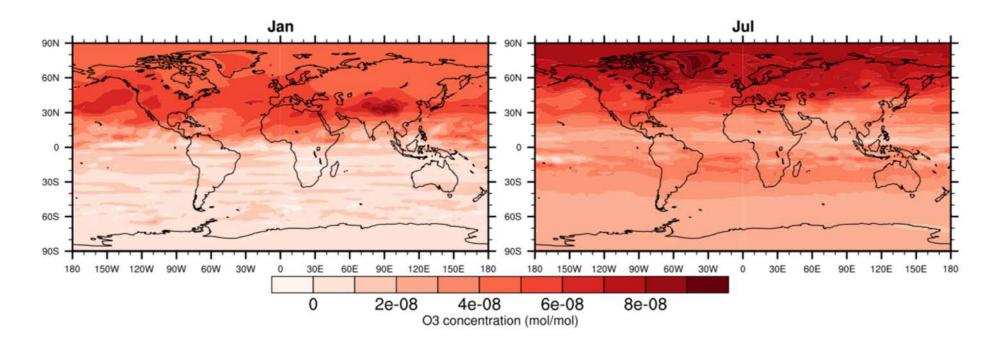
CCR / ASCENT Projects (Mar 2018 to Oct 2018):


- Evaluation of the regional climate effects based on different latitudinal bands and regions (ongoing)
- ✓ For regional studies, new modeling studies using CAM5-Chem to calculate the regional forcing effects of NOx and aerosols emissions (ongoing)
- Calculate temperature response over latitude bands and regions based on model output and CICERO approach (ongoing)
- Conduct simulations on new version CESM2 (CAM6-chem) (In process)

Recent Accomplishments and Contributions

Simulations of the climate effects induced by regionally important aviation emission species (NOx, SO₄ and BC)

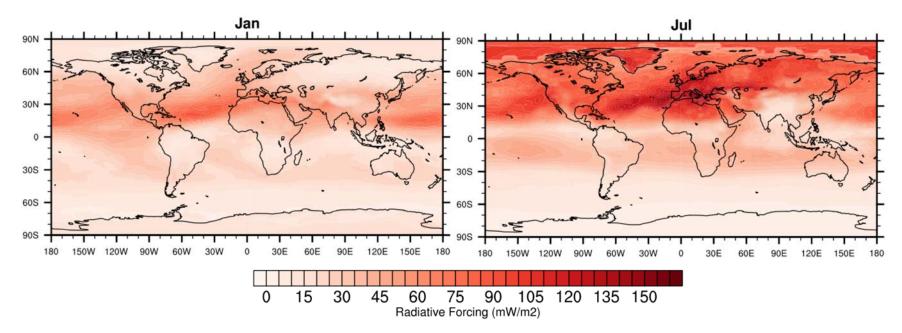
NOx perturbation simulation



Perturbations of the NOx concentration in January and July based on 2006 aviation NOx emission

Recent Accomplishments and Contributions

Perturbations of the O_3 concentration in January and July based on 2006 aviation NOx emission



NOx-induced O₃ production are mainly over Northern Hemisphere

Recent Accomplishments and Contributions

Radiative forcing (mWm-2) from O₃ in January and July due to 2006 aviation NOx emissions

- Strong regional and seasonal variability
- Forcing mainly over emission regions
- > July has larger forcing

Recent Accomplishments and Contributions

Radiative forcing (mWm–2) of O_3 over latitude bands and regions compared with global values for 2006

Radiative forcing (mW/m2)	90°S-28°S	28°S-28°N	28°N-60°N	60°N-90°N	Global
O ₃	12.6	27.5	67.1	45.6	37.3

Radiative forcing (mW/m2)	United States	Europe	East Asia	Global
O ₃	69.5	68.5	52.7	37.3

Findings

- Model simulations underway for studying regional effects.
- > Analyses and evaluation of CICERO approach partially done.

Next steps

- Complete modeling studies using new CAM6-Chem to calculate the forcing effects of aviation for both 2006 and 2050.
- Derive regional temperature change based on model simulated forcing due to global aviation emissions.

Key challenges/barriers

CESM2 recently released; will rerun all simulations on this new version.

- Brasseur, G. P., A. Gettelman, M. Jacobson, P. Minnis, J. Penner, R. Prinn, H. B. Selkirk, N. Unger, H.-W. Wong, D. J. Wuebbles, P. Yang, R. Halthore and S. D. Jacob, 2013: *Aviation Climate Change Research Initiative (ACCRI) Phase II Report*. Federal Aviation Administration, Washington, D. C.
- Chen, C.-C., and Gettelman, A.: Simulated 2050 aviation radiative forcing from contrails and aerosols, *Atmos. Chem. Phys.*, 16, 7317-7333, doi:10.5194/acp-16-7317-2016, 2016.
- Khodayari, A., S. Times, S. C. Olsen, D. Phoenix, and D. J. Wuebbles, J.-F. Lamarque, and C.-C. Chen, 2015: Aviation 2006 NOx-Induced effects on atmospheric ozone and HOx in Community Earth System Model (CESM). *Atmos. Chem. Phys.*, 113, 135-139, doi:10.1016/j.atmosenv.2015.04.070.
- Lund, M. T., Berntsen, T., Fuglestvedt, J. S., Ponater, M., & Shine, K. P. (2012). How much information is lost by using global-mean climate metrics? an example using the transport sector. *Climatic Change*, *113*(3-4), 949-963.

Zhang and Wuebbles, 2016: Evaluation of FAA Climate Tools: APMT. Federal Aviation Administration report.

Zhang and Wuebbles, 2017: Evaluation of FAA Climate Tools: APMT. Federal Aviation Administration report.

Special thanks to Daniel Jacob, FAA project manager Rangasayi Halthore, FAA

Participants

Jun Zhang, University of Illinois at Urbana-Champaign

Supplementary

CICERO Approach

$$ARTP_{i,r,m}(H) = \sum_{l} \frac{RF_{i,l,r}}{E_{i,r}} \cdot RCS_{i,l,m} \cdot IRF(H)$$

 $ARTP_{i,r,m}(H)$: absolute regional temperature change of species *i* in latitude band m at time *H* following a pulse emission in region *r*.

 $RF_{i,l,r}$: the radiative forcing in latitude band *l* caused by one year of emissions $E_{i,r}$ of species *i* in region *r*.

 $E_{i,r}$: emissions of species *i* in region *r*.

RCS_{*i*,*l*,*m*}: regional climate sensitivity, the regional response in latitude band *m* due to a radiative forcing in latitude band *l* caused by a change in species *i*

IRF(H): temporal temperature response to an instantaneous unit pulse of RF