

Project Motivation & Objectives

A foundational database of current and newly emerging alternative jet fuels (AJF) to aid in design and certification of new jet fuels

- Compile centralized knowledgebase of AJF data
- Integrate knowledge on AJF development path
- Support national and international research and certification initiatives

Database Scope & Annual Approach

Scope: Focus on AJF *testing* and *approval* Year 1: Identify spectrum of available data Year 2: Prioritize and construct web portal • Develop database structure and populate with data

Year 3: Understand variability present in AJFs • Evaluate tools for fuel blend property predictions

				_ Biend Ratio (A1:C1)					
Speed of Soun	d Equation	Density	Equation	Specification	90:10	70:30	50:50	30:70	10:90
WFS	y=-4.113x +1403.7	WFS	y=-0.7216x +815.5	Density [D4052]	1.19	0.48	0.00	0.36	0.12
HEFA	y=-2.748x +1371.4	SKA	y=-0.7439x +796.8	Flash Point [D93]	4.90	2.01	8.79	3.31	2.50
Specific Heat	Equation	Viscosi WFS	ty Equation v=2.849*0.9750 [×]	Viscosity [D445]	4.83	4.09	3.01	3.74	2.37
FT	y=0.0030x +1.300 y=0.0030x +1.784	SKA	y=3.091*0.9815 [×]	Viscosity [D445]	7.26	5.06	13.21	8.56	1.16
FSJF	y=0.0018x +1.580	HEFA	y=2.894^0.9777*	Freeze Point [D5972]	0.72	0.57	3.76	1.67	1.92
Table 1 (L): Sample thermophysical relations for fuel categories			Cetane Index [D976]	1.75	0.22	0.86	0.22	0.00	
Iable 2 (R): Percent error for actual vs. predicted FCAST NJFCP A1:C1 fuel blond properties				Aromatics [D6379]	5.80	3.38	6.22	1.95	0.47

ATCT rue piena propercies

Year 4: Expand analysis capabilities and data storage Convert fuel data to JSON files for integration Extract useful fuel statistics (e.g. category distributions) Store NJFCP experimental and modeling results

Lab Report No:201	5LA52946001	Date Recei		С	D	E	
Cust Sample No:123 JON: GENERAL FUND	341	Date Repor	Min		Max	Result	
Sample Submitter.						Pass	
AFRL/RQTF			Report Only			+18	}, {
1790 Loop Road N Bldg 490 Wright-Patterson AFB, OH 45433 Reason for Submission: AFRL Research					0.015	0.00	
					25.0	11.2	
					0.002	0.000	
Product: Aviation Turbine Fuel, Kerosene Specification: MIL-DTL-5624V Grade:JP-5					0.30	0.02	
	Report Only		183	ı			
Method	Test			-	205	204	{
MIL-STD-3004C(1) ASTM D 6045 - 12	Appearance Color, Saybo	lt	Report Onl	У		212	
ASTM D 3242 - 11	Total Acid N	lumber (mg KOH	Report Onl	У		230	
ASTM D 1319 - 14 ASTM D 3227 - 13	Aromatics (% Mercaptan Su	vo⊥) lfur (% mass)	Report Onl	У		245	
ASTM D 4294 - 10 Total Sulfur (% mas:		(% mass)			200	256	

Fig. 2: (L to R) a) Original fuel analysis report (PDF), b) Fuel data extraction (Excel), c) Converted fuel data (JSON file)

stamp":"15/03/13 13:01", mum value":"Report Only" me evaporated value":"10 method":"D 86" mum_value":205.0, me_evaporated unit":"%". stamp":"15/03/13 13:01" ':"C", mum value":""

Project #33 **Alternative Fuels Database Library**

me evaporated unit":"%"

me evaporated value":"20 method":"D 86" mum_value":"", me_evaporated_unit":"%"

Jet Fuel Data Integration altjetfuels.illinois.edu

• Fuel data collection features: Advanced, basic, and dropdown search functions Direct data file download Fuel database analysis capabilities:

October 9-10, 2018

This work was funded by the US Federal Aviation Administration (FAA) Office of Environment and Energy as a part of ASCENT Project 033 under FAA Award Number: 13-C-AFJE-UI-015. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA or other ASCENT Sponsors.

- Nearly 300 unique POSF IDs for conventional and AJFs

Fuel Property Analyses

• *Multivariate Linear Regression* (MLR) Extended prior work (Won, 2016) evaluating critical combustion properties using AJFTD resources Supports need for continued AJFTD expansion to encompass recent fuel property and test data

Fig. 7: Processed Metron airport fuel data elucidating effect of data recording errors on fuel density measurements (L) and corrected results (R)