FAA CENTER OF EXCELLENCE FOR ALTERNATIVE JET FUELS & ENVIRONMENT

Naphthalene Removal Assessment Project 39

Project managers: Warren Gillette & Rangasayi Halthore (FAA) Lead investigators: Raymond Speth & Steven Barrett (MIT)

> October 9–10, 2018 Alexandria, VA

Opinions, findings, conclusions and recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of ASCENT sponsor organizations.

Motivation

NvPM cause and effect

Aviation-attributable non-volatile particulate matter (nvPM) emissions contribute to:

- Air quality related **health effects**
- Aviation's climate impact through • direct & indirect radiative forcing and contrail formation

Naphthalenes in jet fuel have been identified as **disproportionate** contributors to nvPM emissions compared to other fuel species

Motivation

Typical jet fuel composition

J. H. Gary, G. E. Handwerk, and M. J. Kaiser, CRC Press, 2007. "Petroleum Quality Information System 2013 Annual Report," Jan. 2013.

Naphthalene Removal

4 On average, naphthalenes constitute **less than 2% of the total composition of jet fuel**, and less than 10% of the total aromatic content

3 There are **industry-standard finishing processes** that, with minimal changes, could be used to eliminate naphthalenes in jet fuel feedstocks

Approach & Current Status

Project Goal

Conduct a U.S.-wide cost-benefit analysis of naphthalene removal

Research Steps

- Develop models of refinery processes capable of removing naphthalene
- 2 Calculate **investment and operating costs** associated with these processes

3 Calculate additional lifecycle GHG emissions from refinery processing

- 4 Estimate reduction in nvPM emissions from use of naphthalene-depleted fuel
- 5 Calculate **air quality impacts** of changes in emissions
- 6 Estimate climate impacts of changes in emissions

Refinery Processing Model

Hydro-Treating

- Industry standard finishing process
- Hydrogen and jet fuel reacted to:
 - Saturate di-aromatics
 - Remove sulfur / nitrogen

Extractive Distillation

- Di-aromatics selectively **removed** from jet fuel using a polar solvent
- Naphthalene raffinate used or burned elsewhere in the refinery

Refinery Processing Costs

- Market perspective: Used to estimate the impact of jet fuel market price, based on the expected return of refiners
- Societal perspective: Used for comparison to the benefits of climate and air quality, which impact society as a whole

nvPM Reduction: Literature Estimates

- CFM-56 engine studied using jet fuel seeded with varying levels of naphthalene-rich or –depleted aromatic additive (Brem et al, 2015). Observed nvPM reduction for 1.6 vol% naphthalene reduction:
 - 30% Engine Thrust: ~50% reduction
 - 65% Engine Thrust: ~30% reduction
 - 85% Engine Thrust: ~15% reduction
 - 100% Engine Thrust: ~0% reduction
- T63 turboshaft engine studied at "idle" and "cruise" conditions, using fuels with varying aromatic and naphthalene contents (Dewitt et al, 2008). Compare nvPM production from JP-8 and biofuel with 20% naphthalene-free aromatics. nvPM reductions were:
 - Engine Idle: 40% reduction
 - Engine Cruise: 15% reduction
- Assumed range of nvPM reductions from naphthalene-free fuel: 15-40%

nvPM Reduction: Combustor Modeling

- Detailed-chemistry reactor network for nvPM estimation
 - Reaction Mechanism Generator (RMG) used to generate the jet-fuel combustion reaction mechanism
 - Soot inception and microphysics estimated through the combustor model
- Fuel composition study to estimate naphthalene's differential impact on soot production

nvPM Environmental Impacts

Radiative Source	Air Quality Impact	Climate Impact	Description
Reduced nvPM	Reduced Mortalities	Cooling	Reduced soot emissions from jet engines
Refinery Emissions		Warming	Increased CO ₂ , light end emissions from hydrogen production / utilities
Contrail Effects		Mixed	Increased hydrogen fuel content Decreased soot particulate size
Reduced Sulfates*	Reduced Mortalities	Warming	Reduced fuel sulfur content from refining

*Hydro-treatment will remove the majority of sulfates. Extractive distillation has limited impacts on sulfates.

Refinery Processing Emissions

- Utilities used in the refinery generate CO₂ emissions
 - Natural gas used for process heat and H₂ production
 - Electricity
 - Light ends used for process heat
 - Byproduct naphthalene used for process heat
 - Upstream crude emissions for make-up jet fuel

Parameter	Hydro-Treating	Extractive Distillation
Incremental EI	3.35 gCO ₂ / MJ	3.12 gCO ₂ / MJ
Increase in Well-to-Pump EI	17.5%	16.3%
Increase in Well-to-Wake EI	3.7%	3.4%

11

Air Quality Impacts: Initial Estimates

- Consider nvPM emissions • reduction of 15-40% and sulfur reduction of 97% (for HT)
- Use PM_{2.5} sensitivities from GEOS-٠ Chem regional adjoint model
- Evaluate monetized health ٠ impacts due to cardiovascular disease and lung cancer (Krewski et al, 2009)

Location

sensitivities to nvPM emissions

Species

Impact Pathway	Monetized Benefits (¢/gallon)	
nvPM	0.08 (0.02 – 0.16)	All anon aris
Sulfate PM	1.86 (1.05 – 2.67)	$ \begin{array}{c} $

Time

Exposure

Air Quality Model Resolution

- Challenge
- Air quality impact estimates depend on model resolution
- Low resolution models underpredict impacts
- Discrepancies are speciesdependent
- Largest discrepancies are for nvPM

Approach

- Run higher-resolution regional AQ models without chemistry
- Apply existing reduced order, high-resolution and downscaling approaches (Wang et al 2014; Tessum et al, 2017)

Climate: Preliminary Results

- Consider nvPM emissions reduction of 15–40% and sulfur reduction of 97% (for HT)
- Evaluate monetized climate costs
 using APMT-I Climate model
 - Suitable for evaluating RF changes for direct & indirect BC and sulfate PM
 - Does not currently include impact of changing nvPM emissions on contrails

Impact Pathway	Cost (¢/gallon)
nvPM	-0.12 (-0.0150.23)
sulfate*	4.14 (0.60 – 11.1)
Refinery CO ₂	1.90 (0.31 – 5.12)

Climate Impacts: Contrail Model

- Contrails & contrail cirrus are estimated to be responsible for ~40% of aviation's net climate impact on a NPV basis
- Use the Contrail Evolution and Radiation Model (CERM) to evaluate the role of **fuel properties** on contrail radiative forcing
 - Flight tracks & meteorological data used to evaluate contrail formation
 - Track persistent contrails and model growth, settling, diffusion, and evaporation
 - Calculate shortwave and longwave radiative forcing based on ice crystal properties

Effect of fuel properties on contrails

- Used CERM to simulate effect of paraffinic biofuels on contrail properties for US-origin flights
- Change in water emissions & E heating value causes contrails to [form more frequently]
- Decrease in number of ice crystals results in larger ice crystals, which fall faster, making contrails shorter-lived
- Contrails composed of fewer ice crystals have lower optical depth
- Complex effect on net radiative forcing due to competing warming & cooling effects

	Conventional Fuel	Paraffinic Fuel
El(ice nuclei) [10 ¹⁵ /kg _{fuel}]	1.0	0.31
EI(H ₂ O) [kg/kg _{fuel}]	1.23	1.37
LHV [MJ/kg]	43.1	44.1

Partial Cost-Benefit Analysis

Extractivo

	Component	Hydrotreatment (¢/gallon)		Distillation (¢/gallon)	
Air quality	nvPM	-0.1	(-0.02 – -0.16)	-0.1	(-0.02 – -0.16)
	Sulfur	-1.9	(-1.1 – -2.7)	0	
Climate	nvPM	-0.2	(-0.02 – -0.6)	-0.2	(-0.02 – -0.6)
	Sulfur	4.1	(0.6 – 11.1)	0	
	Contrails	unknown		unknown	
	Refinery	1.9	(0.3 - 4.8)	1.9	(0.3 – 5.1)
Processing	Refinery	9.1	(8.7 – 9.5)	6.4	(6.1 – 6.8)
Total		13.0	(9.0 – 20.7)	8.1	(6.5 – 11.4)

Median values and 95% CIs shown for each component. Positive values indicate net costs.

References

- B. T. Brem *et al.*, "Effects of Fuel Aromatic Content on Nonvolatile Particulate Emissions of an In-Production Aircraft Gas Turbine," *Environ. Sci. Technol.*, vol. 49, no. 22, pp. 13149–13157, Nov. 2015.
- M. J. DeWitt, E. Corporan, J. Graham, and D. Minus, *Energy Fuels*, vol. 22, no. 4, pp. 2411–2418, Jul. 2008.
- DLA Energy, "Petroleum Quality Information System 2013 Annual Report," Jan. 2013.
- J. H. Gary, G. E. Handwerk, and M. J. Kaiser, *Petroleum Refining: Technology and Economics, Fifth Edition*. CRC Press, 2007.
- G. Hoek, R. M. Krishnan, R. Beelen, A. Peters, B. Ostro, B. Brunekreef, J. D. Kaufman, "Long-term air pollution exposure and cardio- respiratory mortality: a review", *Environmental Health*, vol. 12, p. 43, 2013.
- D. Krewski, M. Jerrett, R. T. Burnett, R. Ma, E. Hughes, et al., "Extended Follow-Up and Spatial Analysis of the American Cancer Society Study Linking Particulate Air Pollution and Mortality" (No. 140). Boston, MA: Health Effects Institute, 2009.
- R. H. Moore *et al.*, "Influence of Jet Fuel Composition on Aircraft Engine Emissions: A Synthesis of Aerosol Emissions Data from the NASA APEX, AAFEX, and ACCESS Missions," *Energy Fuels*, vol. 29, no. 4, pp. 2591–2600, Apr. 2015.
- C. W. Tessum, J. D. Hill, and J. D. Marshall, "InMAP: A model for air pollution interventions" *PLOS ONE,* vol. 12, e0176131, Apr. 2017.
- R. Wang, S. Tao, Y, Balkanski, P. Ciais, O. Boucher, et al., "Exposure to ambient black carbon derived from a unique inventory and high-resolution model", *Proceedings of the National Academy of Sciences*, vol. 111, issue 7, pp. 2459–2463, Feb. 2014.

Contributors

- Drew Weibel
- Mengjie Liu
- Agnes Jocher
- Raymond Speth
- William Green
- Steven Barrett