FAA CENTER OF EXCELLENCE FOR ALTERNATIVE JET FUELS & ENVIRONMENT

Quantifying uncertainties in predicting aircraft noise in real-world situations

Project 40 – Purdue Part

Project manager: Hua (Bill) He, FAA Lead investigators: Vic Sparrow, Phil Morris [Penn State] and Kai Ming Li [Purdue]

> October 9 – 10, 2018 Alexandria, VA

Opinions, findings, conclusions and recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of ASCENT sponsor organizations.

- Desire for enhanced capabilities to better support environmental impact studies at national and international levels
- There are gaps in understanding the uncertainties for predicting aircraft noise in the current FAA modeling tools
- Need to increase the Research Readiness Level (RRL) of noise emission and propagation capabilities for possible future use in FAA noise tools

Objectives

- Quantify uncertainties of both numerical model and field data for predicting aircraft noise in real world situations
- Validate current and new FAA noise modeling capabilities

Approach

- Review and analyze field data that are influenced by (i) the meteorological conditions, (ii) the effect of high-speed source motion
- Identify sets of field data for specific propagation scenarios to validate the enhanced modeling capabilities
- Estimate an overall uncertainty in predicting aircraft noise based on the input information on source, propagation path and receiver.

Schedule / Status

- Previous work and findings (Purdue)
 - Review and analyze the field measurement data obtained from Discover/AQ dataset.
 - Investigate Doppler's effect due to source motion
 - Quantify the uncertainties due to ground effects

Current Work (Purdue)

- Examine the Discover/AQ dataset for uncertainties due to the effect of source motion
- Assess the overall uncertainties in noise predictions of fly-over aircraft
- Quantify the uncertainties due to ground effects (continue)

See the poster presentation for the PSU work

Outcomes and Practical Applications

Outcomes

- Identify and analyze measurement data from Discover/AQ dataset: Level flight paths
- Validation of existing propagation models with available experimental databases.
- Establish the uncertainties in the prediction models.
- Reports and codes

Practical applications

- Improvements to AEDT
- Better impact assessment of aircraft noise
- Work useful for noise modeling of both current fleet and future generation of propulsion systems

Research Tasks

Penn State

See the Poster presentation

Purdue

- Study the combined effect of source motion, atmospheric and terrain profiles on the propagation of aircraft noise
- Examine the uncertainty in predicting the aircraft noise by the current AEDT model
- Investigate the effect of terrain profile, ground impedance and microphone placement on noise measurements

Status of databases: Discover/AQ dataset

- A set of acoustic, atmospheric and aircraft location data measured in September 2013 by NASA and Volpe (in support of FAA) in the vicinity of Houston, Texas.
- Lockheed P-3B Orion and Beechcraft B-200 Super King Air.
- Flight path: Level & spiral flight paths

Site Data

- Site location
- 1/3 octave SPL

NASA P-3B in a typical mission configuration layout during a check flight. (Photo Credit: NASA)

On Board Data

- Aircraft GPS location including rolling angle etc.
- Acoustic data

Examples of Different Event Types during the Houston DISCOVER-AQ Flight test (Graphic Credit: NASA)

Atmospheric Profiles:

- Temperature
- Humidity
- · Wind speed
- Pressure

One of the measurement sites (Graphic Credit: NASA)

Updated Schedule and Status

Aug. 2018: In liaison with PSU, the Purdue research team starts working on the project

October 2018: Fall 2018 ASCENT advisory committee meeting – Purdue: project presentation; PSU: poster presentation

Nov. 2018: Analysis of BANOERAC dataset (work in coordination with PSU) if needed.

Dec. 2018: First Technical Report

Jan. 2019: Underway – Liaison to obtain the Silence(R) dataset (Dr. Sparrow of PSU takes the lead)

Feb. 2019: Preparation for Spring 2019 ASCENT advisory committee meeting

 $f_{shifted} = D \cdot f_{original}$

Original A-weighted

Shifted A-weighted

evel = 62 dB

|eve| = 66 dB

Doppler's shift and A-weighting

Doppler effect:

- Increase or decrease the absolute sound pressure level: $20\log_{10}D^2$
- Apparent shift in the source frequency (Doppler shift):

What are the consequences of the frequency shift?

- A weighted SPL increased/decrease
- Air absorption
- · Ground reflection and line-of-sight blockage effects

Effect of frequency shifts on pure tone and third-octave band noise

- Low frequency noise is more sensitive to the shifting.
- The influence of shifting to pure tone noise is less than that to 1/3 octave band noise.
- Strictly speaking, the shape of the spectrum, air absorption, ground effect and any frequency dependent effects could all influence the results

Propagation Model

Propagation factors

Dependent Parameters

(a) Divergence effect
(b) Air absorption
(c) Refraction
(d) Doppler effect
(e) Ground effects

Propagation distance Dist., temp., humidity, freq. and pressure Wind speed/temp profiles and dist. Aircraft speed, receiver location Ground properties, Freq., elevation angle and R

AEDT model

NPD User defined model Lateral attenuation Only partially Included Lateral attenuation

Theoretical model

 $\frac{1/R}{\alpha(f,T,rh,pr)\cdot R}$ Ray tracing or wave equation model $f = D \cdot f_0, \quad p = D^2 p_0$ $p = \frac{e^{ikR_i}}{4\pi R_i} + [R_p + (1-R_p)F(w)] \frac{e^{ikR_2}}{4\pi R_i}$

Ground effect

Discussion of NPD curves

Noise Power Distance curve of P-3B

- NPD curve derived with the guideline documented in SAE-AIR-1845
- Often provided by manufacturers based on measurement data

Level flights in DISCOVER-AQ datasets

- Six receivers near the flight path in various forested areas
- P3B Orion at level flight (at about 300 m height) with constant power settings
- Aircraft speed of about 71 m/s or 138 knots (comparable with NPD ref. speed)

Typical measured data for the level flights

- The aircraft noise could be seen clearly from these typical datasets.
- The sound exposure level and maximum value could be calculated with the data.
- Aircraft Noise was 10 dB higher than the background level levels

Source subtraction method for the sound exposure level

- The source effect can be minimized by analyzing simultaneous measurements at different locations.
- The difference between the sound pressure levels measured at two receiver points is dominated by the propagation effect.
- The directivity of source could influence the analysis but it should be small at long distances.

Summary

- Work underway to quantify uncertainties via available data
 - DISCOVER/AQ dataset is used to examine the possible uncertainties on the predictions of en-route aircraft noise
 - Investigate the uncertainties of the AEDT prediction model with the measured noise data
 - Improve the noise propagation capabilities for use in FAA noise tools
- Key challenges/barriers
 - Just beginning to understand uncertainty in aircraft noise sources and the Doppler effect of an en-route aircraft. Lots more to do
 - Would like to identify additional industrial partners who can provide supporting data or expertise
 - Funding uncertainty on the project impacts on the ongoing work

References

- BANOERAC Project final report, Document ID PA074-5-0, ANOTEC Consulting S.L. (2009).
- E. Boeker, *et al.*, "Discover-AQ Acoustics Measurement and Data Report," DOT-VNTSC-FAA-15-09 (2015).
- Salomons, Erik M. *Computational atmospheric acoustics*. Kluwer Academic, 2001.
- Wilks, Daniel S. *Statistical methods in the atmospheric sciences*. Vol. 100. Academic press, 2011.
- Wilson, D. Keith, et al. "Description and quantification of uncertainty in outdoor sound propagation calculations." *The Journal of the Acoustical Society of America* **136** (3) 1013-1028 (2014).
- Attenborough, Keith. "Review of ground effects on outdoor sound propagation from continuous broadband sources." Applied acoustics 24, no. 4 (1988): 289-319.
- Yiming Wang and Kai Ming Li. "Uncertainty due to Doppler's Shift on Aircraft Noise Prediction." INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 2018.
- Patankar, H. P., and Sparrow, V. W. "Quantifying the effect of uncertainty in meteorological conditions on aircraft noise propagation." INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 2018.

Contributors

- Penn State: Victor Sparrow, Phil Morris, Harshal Patankar
- Purdue: Kai Ming Li, Yiming Wang, Jianxiong Feng
- FAA: Bill He
- Volpe: Eric Boeker, Juliet Page
- National Aviation University, Ukraine: Sasha Zaporozhets
- Industry partners: Mark Cheng and Rachel Min (Vancouver Airport Authority); Nico van Oosten (ANOTEC)