

Background and Motivation

- It may be possible to fly at speeds between Mach 1 and 1.15 wherein the sonic booms do not reach the ground.
 - > Under these conditions, an evanescent wave does reach the ground and may be audible.
 - > Mach cut-off depends on atmospheric refraction to bend the sound upwards.

Diagram courtesy NASA¹; adapted.

This research aims to assess the possibilities for Mach cut-off flight over land using both sound propagation simulation (task 1) and subjective studies (task 2).

Methodology

Enhanced Ray-tracing Capabilities

- Mach cut-off operation predicted using ray-tracing method
- Weather model and data used for the atmosphere
- Modeling includes temperature and 3-D wind effects
- Synthesized Mach Cut-off Sounds using linear theory

Perceptual Studies

- Perceptual study divided into descriptor and annoyance tasks
- Free-choice profiling used to analyze descriptors
- Paired comparison used to rate annoyance and other factors
- Metrics analyzed for correlation with perceptual factors

Acknowledgements

We thank AERION for their participation, and NASA for their consultation and access to the FaINT dataset.

Project 42 Acoustical Model of Mach Cut-off Flight **Ray Tracing Using Atmospheric Data**

Realistic Atmospheric Data

- Good "snapshots" of the atmosphere are desired for the studies.
- IGRA and CFSv2 datasets have been used in this study.
- Future work will be focused on High-Resolution Rapid Refresh (HRRR) model.

Atmospheric Datasets						
Model	Domain	Grid Points/	Grid Spacing	Vertical	Pressure	Initialized
		# of Stations		Levels	Тор	
IGRA	Global	Nearly 1000		Depends		12 hours
				(50 ~ 82)		
CFSv2	Global	720 x 361	0.5º/55 km	37	1mbar	6 hours
HRRRv2	CONUS	1799 x 1059	3 km	50	20 mbar	Hourly

Advanced Ray Tracing

- A 3-D ray-tracing scheme has been developed². Temperature, pressure, eastward and northward winds, and vertical wind
- effects have been included. • A 3-D ray-tracing diagram using CFSv2 data³:
- \succ 7 AM EST on Jan 1, 2017 over Los Angeles

Range [km]

Synthesized Mach Cut-off Sounds

- Input sonic boom signatures from NASA
- Diffraction effect modeled as a diffraction boundary layer around the caustic
- Output sound signatures at different altitudes below the caustic predicted using linear lossless Tricomi equation

Investigators: Victor Sparrow, Michelle Vigeant. Project manager: Sandy Liu, FAA. Research assistants: Zhendong Huang, Nicholas Ortega. October 9-10, 2018

This work was funded by the US Federal Aviation Administration (FAA) Office of Environment and Energy as a part of ASCENT Project 42 under FAA Award Number: 13-C-AJFE-PSU-020. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA or other ASCENT Sponsors.

Subjective Evaluation of Mach Cut-off

Descriptor Study

- Subjects listened to recordings of Mach cut-off and developed their own descriptors • 28 total participants
- Ratings were collected on these descriptors
- Generalized Procrustes Analysis⁴ used to establish Principal Components (PC) across all subjects
- 24 stimuli used from NASA's FaINT⁵ dataset

Annoyance Study

- 3 descriptors chosen for more careful analysis: "thunderous", "rumbly", and "swooshing" • "Annoying" also included
- Ratings collected through paired comparison to increase validity
- Interface (shown right) repeated for each descriptor and each pair
- 6 stimuli + 3 synthesized

- NASA SP-255 (1971).

Descriptors plotted (left) using correlation values with PCs; major clusters circled and example terms highlighted Terms clustered around extreme component axis endpoints PC 1 related to loudness (soft/distant vs thunderous) PC 2 related to frequency (bass-heavy vs white noise) Most common terms: "thunderous" and "rumbly" 3rd set (not shown) related to "pulsing" / "swooshing" Some metrics correlated with component 1 (not shown)

- "Thunderous" ratings most consistent
- "Rumble" increased consistency (compared to study 1 PC2)
- "Swooshing" ratings dominated by loudness
- Various metrics calculated
- Ratings and metrics correlated, potential for prediction
- Data for **38 / 40** subjects collected so far

References

Maglieri et al. "Measurements of Sonic Boom Signatures From Flights at Cutoff Mach Number."

2. Pierce, A. D., Acoustics (McGraw Hill, 1981 & Acoustical Society, 1989), Secs. 8-1 and 9-4. Saha S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., et al. (2014). "The NCEP climate forecast system version 2". Journal of Climate 27 (6) 2185-2208 (2014). Gower, JC. (1975). "Generalized Procrustes Analysis". Psychometrika. 40:1, pp. 33-51 5. Cliatt, LJ; Hill, MA; Haering, EA. (2016). "Mach cutoff analysis and results from NASA's farfield investigation of no-boom thresholds". Aeroacoustics conferences AIAA 2016-3011. Williams, AA; Langron, SP. (1984). "The use of free-choice profiling for the evaluation of commercial ports". J. Sci. Food Agric. 35 pp.558-568.