Noise Power Distance Re-evaluation Project 43

Lead investigator: Dimitri Mavris (PI), Chris Perullo (Co-I), Michelle Kirby (Co-I) Presenter: Christopher Perullo Project manager: Hua (Bill) He (FAA) October 9-10, 2018 Alexandria, VA

Opinions, findings, conclusions and recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of ASCENT sponsor organizations.

Project 43 Goals

- Motivation
 - NPD method within AEDT was developed decades ago with little flexibility to account for airframe noise and speed effects
 - Away from airports and for different flight segments, assumptions become less robust
- Project Impact
 - Enhance the accuracy of AEDT through improved aircraft source noise prediction and modeling
 - Needed to support the evaluation and development of aircraft flight procedures that could reduce community noise
 - Facilitate the implementation of NextGen through improved characterization of the noise benefits it would deliver
- Objectives
 - Study representative fleet mixes and aircraft types
 - Validation against available measurement data
 - Investigate a method to effectively represent the fleet
 - Maintain compatibility with existing NPD (integrated modeling) approach

ASCENT Project 43 Overview (Year 1)

- Objectives
 - Understand the sensitivity of including aircraft configuration changes and reference speed in NPDs on resulting noise contours for 50 – 400 PAX
 - Provide physics-based recommendations on format of NPD + Configuration (NPD+C) curves for use in AEDT
 - Maintain compatibility as much as possible with existing NPD approach

NPD Modeling Overview

Summary of Key Findings (Year 1)

- Examined six aircraft classes ranging from regional jet to large wide-body
- Found effect of flight velocity on source noise to be main source of difference
- Flap noise secondary contributor
- Major differences occur during approach
 - Engine noise near maximum power dominates during departure

Grouping	Study	Parameters	
Baseline	0	Baseline NPD	
	I.A	Include only speed	
Main Effects	I.B	Include only flaps/slats	
	I.C	Include only gear	
	II.A	Speed + Gear	
Cross Terms	II.B	Speed + Flaps	
	II.C	Gear + Flaps	
	II.D	Speed + Gear + Flaps	

Year 2 Project Goals

- Goal
 - Provide a method for expanding and implementing NPD+Cs into AEDT
- Project Impact
 - Previous year study was performed using existing detailed analysis models (ANOPP2)
 - Not practical to create detailed ANOPP2 models for every AEDT database vehicle
 - Develop a method to facilitate implementation correction functions to database NPD+Cs
- Objectives
 - Quantify sensitivity of corrections to aircraft configuration as well as aircraft and engine design inputs
 - Understand the sensitivity of configuration and design inputs in order to develop correction factors
 - Study sensitivities to various noise sources
 - Develop correction functions for NPD+Cs
 - Validate correction functions with ANOPP2 or data (if available)

Various Options and approaches

Integration Approach	Ву	Benefits	Challenges
Multiconfiguration NPDs (working w. mfgrs)	Euro- Ctrl	 From manufacturers. Considered to be well validated. 	 Only limited models so far. Challenges to cover fleet, esp. with out of production a/c models
NPD+C directly from ANOPP	GT tried this	 The process is easy to understand Consistent method for generating NPD+C 	 Complex input parameters and delicate balance of the parameters Validation is still needed Large model library required
NPD+C via correction functions based on ANOPP	GT (Proposed approach – year 2)	 Able to create NPD+C sets from simpler inputs (available within AEDT). No need to create ANOPP models for each a/c type. 	 Need to consider wide condition ranges/rank orders Validation of NPD+Cs Industry buy-in

Motivates Simpler Implementation Approach – Focus of year 2

ANOPP2 Input Simplifications

A method for developing a correction function without using ANOPP2 Empirical equation inputs is being investigated

By using the computations that ANOPP2 does within the program, a correction function can be created based off of parameters available within AEDT

For Each Source -> Identify Physical Drivers

Upcoming Validation Work

- Task 1: Investigate Impact of Frequency Content on Standard NPD
- Task 2: Investigate Impact of Frequency Content on NPD+C
- Task 3: Validate NPD+C Approach Using BANOERAC Data
- Task 4: Validate NPD+C Approach Using Vancouver Airport (YVR) Data

Validation Approach

Two Datasets – Collaborate with Penn State

Dataset	Flights	Aircraft / Engine State	Noise Directivity	Propagation Information	Noise At Receiver
BANOERAC	Many Enroute / Some Climb/desce nt	*	May contain shock-cell noise	Limited weather	4" and ground mics
YVR Data	Typical A/C mix, terminal area ops	*	*	Limited weather	Noise monitor terminals

- No direct information. But can be derived from careful processing and analysis of trajectory data using AEDT and EDS (FLOPS / NPSS)
- Exact process depends on dataset content

Validation Collaboration and work

BANOERAC

- Run AEDT in sensor path mode to match dataset
- Use EDS to compare NPD vs. NPD+C for selected vehicles
- Support PSU with ANOPP models of selected vehicles

YVR Data

- Run AEDT following ground tracks and sensor path tracks; use 3a options for weight/thrust
- Run EDS model for selected aircraft
- Compare NPD and NPD+C vs. data

Next Steps

We have been waiting for FY18 research funding to start the future work

- Complete correction function approach
- Gain agreement to access BANOERAC and YVR data
- Begin analysis of above datasets

Acknowledgements

- FAA & Volpe for valuable feedback
- Juliet Page and Eric Boeker for invaluable insight into prior work

Participants

- GT Research Staff:
 - Holger Pfaender, Michelle Kirby, Yongchang Li, Don Lim
- GT Students:
 - Sara Huelsman, Arturo Santa-Ruiz, Edan Baltman