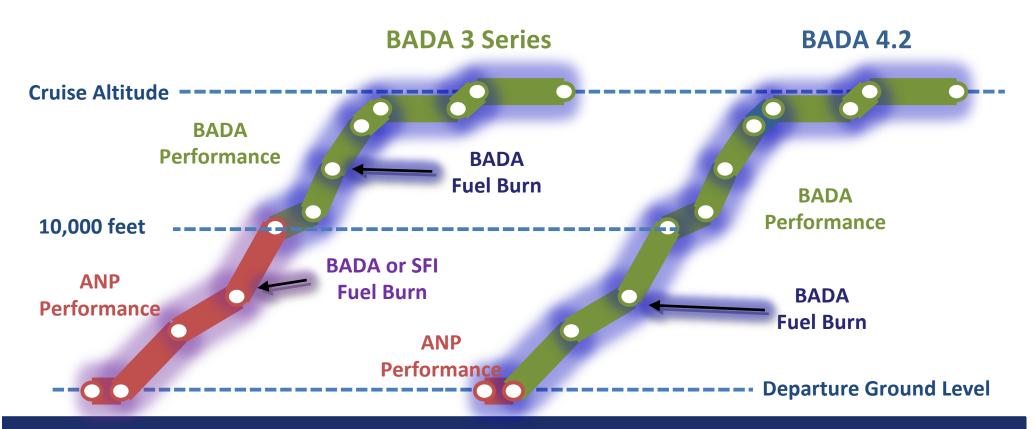

BADA 4 in AEDT 3a & Plans for AEDT4

Presented to: ASCENT Advisory CommitteeBy: Fabio GrandiDate: October 10, 2018

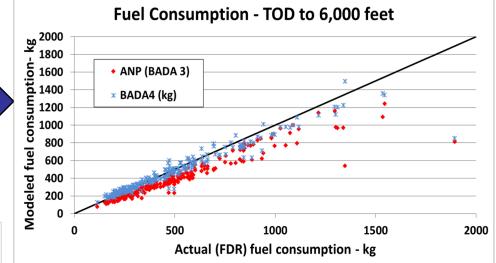
Outline

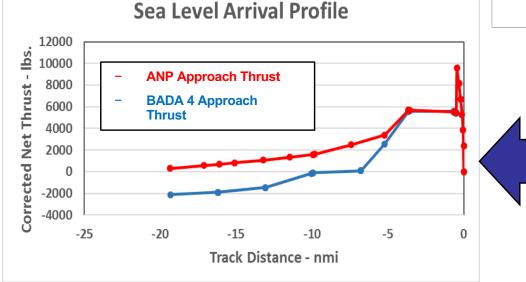
- What is BADA 4?
- Why BADA 4 for AEDT?
- AEDT 3a Current Status
- AEDT Future Development
 - AEDT 3 series
 - AEDT 4
 - ASCENT Support


Base of Aircraft Data (BADA)

- Database and methodology developed and maintained by EUROCONTROL with input from the aircraft/engine manufacturers
- Designed for simulation and prediction of aircraft trajectories
 - BADA can provide fuel burn but not noise or emissions
- Most current <u>public</u> version of BADA is 3 series (v13)
 - Intended for cruise; not accurate for terminal area
 - Public version of AEDT uses Aircraft Noise and Performance (ANP) and certification data for terminal area and BADA3 for cruise.
- Most current version of BADA is 4 series (v2)
 - High fidelity aircraft model (thrust, lift, drag)
 - Includes terminal area data (excluding ground roll)
 - More accurate than ANP in terminal area
 - Currently <u>not publicly</u> available (AEDT use <u>only</u> approved for CAEP and NextGen analyses)

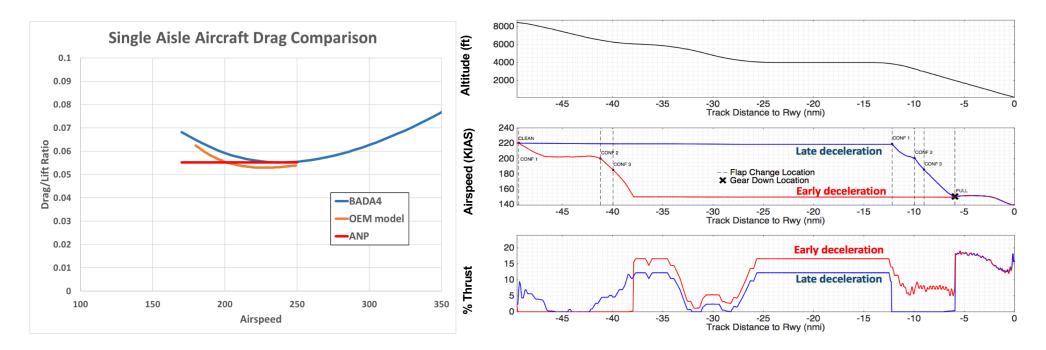
Incorporating BADA4 within AEDT


- Update performance module to BADA 4.2
 - Represents most accurate dataset
 - Replaces ANP data up to ground roll



Improved Performance Model

- BADA 4 improves accuracy of fuel burn calculation below cruise.
 - Necessary for NextGen
 procedure benefits analysis



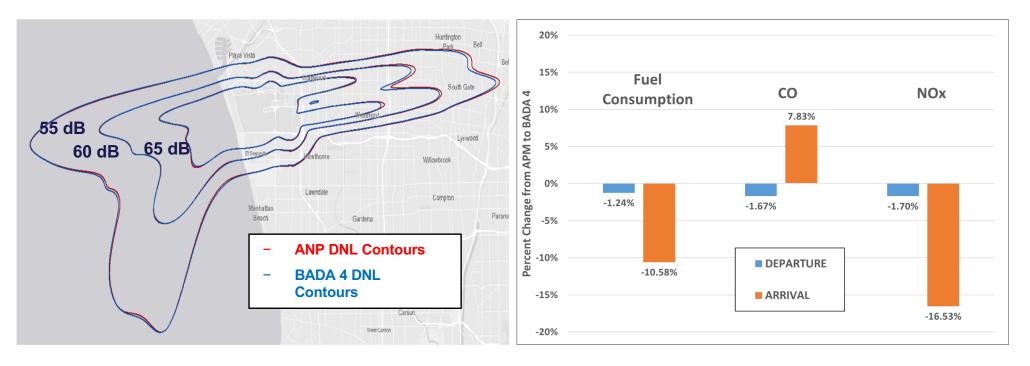
BADA 4 improves fidelity on approach modeling producing more accurate thrust levels compared to ANP model.

Higher Fidelity Modeling

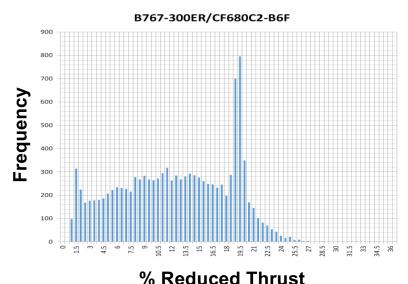
- Higher fidelity BADA 4 performance data will allow for more detailed procedure modeling
 - Captures configuration and speed changes of advanced operational procedures

AEDT Status

- AEDT 3a release planned for 4th Quarter 2018
- Aircraft performance modeling update
 - BADA4 implementation provides more accurate and unified modeling of aircraft performance for both terminal area and cruise operations
 - Improved aircraft takeoff weight and takeoff thrust modeling to better represent flight operations
 - Guidance document for reduced thrust and alternate weight modeling
- nvPM methods for CAEP analysis
- Fleet database updates
 - Gulfstream G650; Boeing 737- MAX8; Boeing 737-800
 Approach
- Windows 10 compatibility
- Notes:


1. nvPM = Non-Volatile Particular Matter

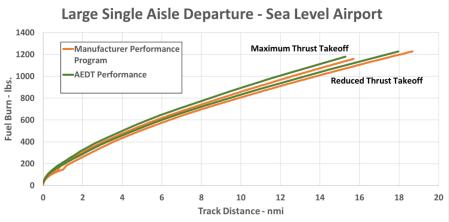
BADA 4 Airport Level Results

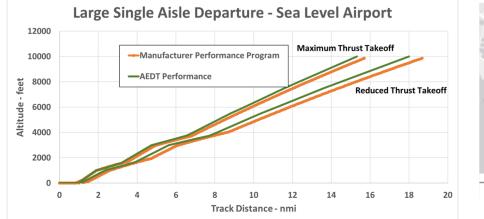

- BADA 4 performance has small effect on noise
 - DNL noise contours roughly 2% smaller with BADA 4 on average
- BADA 4 performance effect on fuel burn varies by fleet mix
 - Total (departure and arrival) fuel burn below 10K feet roughly <u>+</u>5% change with BADA 4

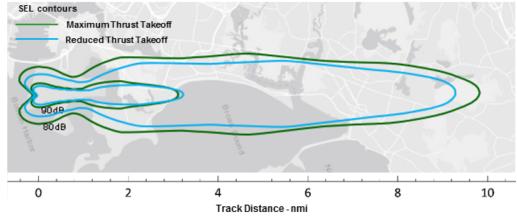
Aircraft Takeoff Weight and Thrust

- Aircraft takeoff weight and thrust are critical parameters in environmental modeling.
- Accurate estimate of the parameters has been historically challenging.
- Limited data available and assumptions:
 - Payload load factor at 65%
 - Standard departure profiles assumes maximum thrust at takeoff
- <u>Research:</u> analyzed airline data and recommended options for improvement
 - ASCENT 35/45
 - Other related projects

B737-800 AEDT2d Modeled versus Actual Takeoff Weight




Range



Reduced Thrust Takeoff Example

AEDT 3x Development Goals

- Further improve the tool's efficiency and user workflow
 - Apply lessons learned from user feedback and improved technologies
- Expand and refine ground operations modeling capabilities
 - Implement latest Taxi operations research
- Improve terminal area noise modeling for airports near water
 - Implement latest noise propagation research
- Improve helicopter noise modeling
 - Expand helicopter noise database
 - Improve helicopter procedure modeling
- Enhance air quality modeling
 - Provide EPA screening options for 1-hour NO₂ modeling
 - Improve characterization of aircraft exhaust emissions

AEDT 4 Development Goals

Higher fidelity noise characterization

- Improve accuracy of noise modelling at lower DNL (where many communities have recently expressed concerns)
- Support design of innovative operational procedure concepts that could reduce noise while maintaining safety and efficiency
- Incorporate improved version of EPA's AERMOD for localscale airport air quality modeling
 - Improvements critical for environmental compliance thereby avoiding delays in project milestones and schedule
- Include capabilities to model supersonic aircraft performance in cruise
 - Complete supersonic modeling capability to cover full gate-togate operation
- Environmental analysis of commercial space operations

ASCENT Projects Supporting AEDT Development

ASCENT 9 GIS-based Noise Estimation Tool (TBD)

- Update AEDT GIS engine to improve efficiency and lower development costs
- ASCENT 10 Aircraft Technology Modeling and Assessment
 - Enable modeling of supersonic aircraft in AEDT
- ASCENT 19 Development of Aviation AQ Tool for Airport-Specific Impact Assessment: AQ Modeling
 - Enhance air quality modeling in AEDT

ASCENT 23 Noise from Advanced Operational Procedures

- Account for airframe noise in AEDT noise model
- ASCENT 36 Parametric Uncertainty Assessment for AEDT
 - Provide uncertainty evaluation of the AEDT to inform future development
- ASCENT 38 Rotorcraft Noise Abatement Procedures Development
 - Develop noise abatement modeling capability in AEDT

ASCENT Projects Supporting AEDT Development

- ASCENT 40 Quantifying Uncertainties in Predicting Aircraft Noise in Real-world Situations
 - Support development of AEDT enhanced aircraft noise model

ASCENT 43 Noise Power Distance Re-Evaluation

- Develop higher fidelity aircraft noise characterization
- ASCENT 44 Aircraft Noise Abatement Procedure Modeling and Validation
 - Support validation of AEDT aircraft noise model
- ASCENT 45 Takeoff/Climb Analysis to Support AEDT APM Development
 - Develop reduced thrust takeoff capability in AEDT
- ASCENT 46 Surface Analysis to Support AEDT APM
 Development
 - Support development of taxiway noise and emissions modeling in AEDT

AEDT Future Development Goals

ACRP 02-27 Aircraft Taxi Noise Database ACRP 02-52 Noise Modeling of Mixed Ground Surfaces ACRP 02-55 Enhanced AEDT Modeling of Aircraft Arrival and Departure Profiles Volpe helicopter polar sphere research ASCENT 19 Development of Aviation AQ Tool for Airport-Specific Impact Assessment: AQ Modeling ASCENT 36 Parametric Uncertainty Assessment for AEDT ASCENT 38 Rotorcraft Noise Abatement Procedures Development ASCENT 45 Takeoff/Climb Analysis to Support AEDT APM Development ASCENT 46 Surface Analysis to Support AEDT APM Development						ACRP 02-66 Commercial Space Operations Noise and Sonic Boom Modeling and Analysis ACRP 02-79 Aircraft Noise with Terrain and Manmade Structures ACRP 02-81 Commercial Space Operations Noise and Sonic Boom Measurements ACRP 02-85 Commercial Space Vehicle Emissions Modeling ASCENT 9 GIS-based Noise Estimation Tool ASCENT 10 Aircraft Technology Modeling and Assessment ASCENT 10 Aircraft Technology Modeling and Assessment ASCENT 19 - Development of Aviation AQ Tool for Airport-Specific Impact Assessment: AQ Modeling ASCENT 23 Noise from Advanced Operational Procedures ASCENT 36 Parametric Uncertainty Assessment for AEDT ASCENT 40 Quantifying Uncertainties in Predicting Aircraft Noise in Real-world Situations ASCENT 43 Noise Power Distance Re-Evaluation (Research) ASCENT 44 Aircraft Noise Abatement Procedure Modeling and Validation						
 2019 2020 2021 Infrastructure and usability updates to improve efficiency and workflow Software maintenance updates Updates to add new airplane and helicopter models to the noise and performance database Enhance enroute performance calculations Potential enhancements of reduced thrust and takeoff weight implementation Enhance noise modeling for airports near water Taxiway Modeling (Noise and Emissions) Helicopter noise modeling improvements Air quality modeling enhancements 							 Higher fidelity aircraft noise characterization Update GIS engine to reduce development costs Supersonic airplane performance (gate to gate) Modeling noise with Terrain and Manmade Structures Commercial Space New Air Quality model 					
	AEDT 3x – F	Release	e AEDT upd	lates biannu	ally			AEDT 4a	AEDT 4x – biannually		odates	

Summary

AEDT 3a will introduce two new features to its users

- An improved performance model that results in more accurate fuel burn and emissions estimates below cruise, and;
- Reduced Thrust Takeoff and Alternative Weight procedures that offer greater flexibility in modeling aircraft departures

• ASCENT research:

- Supported reduced thrust and alternative weight implementation
- Provided critical V&V of BADA 4 implementation
- ASCENT will continue to support near term (AEDT 3x) and future (AEDT 4) development. ASCENT projects include:
 - Helicopter noise modeling
 - Taxi modeling
 - High fidelity noise characterization
 - Supersonic aircraft modeling
 - Air quality modeling

