
Welfare Analysis of Carbon Credits to the Sustainable Aviation Fuel Sector: 
A Game-Theoretic Perspective

• The International Air Transport Association (IATA) has set targets of carbon 
neutral growth by 2020 and green-house gas (GHG) emissions reduction by 50% 
by 2050, compared to the level in 2005.

• Alternative technologies for lesser emissions, such as electrification, are not 
currently feasible in the aviation industry thus requiring Sustainable Aviation 
Fuels (SAF) to achieve ambitious goals on GHG emissions reduction.

• Current research on RJF deals with techno-economic or environmental analysis of 
potential feedstock-based conversion technologies (e.g. Diederichs et al. 2016; 
Bann et al. 2017). 

• Economic interaction between the decision-makers supplying and processing 
feedstocks, along with policy supports, has not been addressed.

MOTIVATION

• To identify the extent to which SAF from lignocellulosic feedstock can justify 
aviation emission reductions while addressing the economic motives of the 
participants.

• To determine the net welfare implications of SAF production with and without 
policy support in the form of carbon credits while internalizing environmental costs 
of aviation GHG emissions. 

OBJECTIVES

METHODS
• Feedstock producers (farmers) are assumed to maximize their individual profits in an 

attempt to fulfill the derived demand for feedstock. 
• The SAF processor minimizes its costs nesting the profit maximizing behavior of the 

individual farmers in response to the regional SAF demand.
• A non-cooperative bi-level Stackelberg game between the feedstock producers and 

the processor is modeled.

Farmer i’s Profit Maximization Objective

• 𝑝௝ denotes feedstock price ($/ton) offered at the processing facility j, φ௜ denotes 
feedstock production cost ($/ton) at site i, θ௜௝ denotes transportation cost ($/ton) 
between i and j, 𝑞௜௝௠ denotes feedstock supply quantity (tons) from i to j at time m, α
denotes annualized feedstock establishment cost ($/acre), β௛௜ denotes opportunity 
cost ($/acre) for land use h at site i, and 𝑥௛௜ denotes acreage of harvested feedstock 
from replacing existing crop h at site i.

Processor’s Cost Minimization Objective (Bi-level Optimization)

• ρ denotes production cost ($/gallon) for processing facility, σ denotes the feedstock-
SAF conversion efficiency (gallon/ton), δ௝௞ denotes transportation cost ($/gallon) 
between processing facility j and airport k, z௝ denotes binary variable of processing 
facility establishment at j, and μ௝ denotes amortized investment cost for processing 
facility j.
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Subject to Equation (1) 

Modeling Influence of Carbon Credits
• Assuming the farmer i supplies feedstock only if the profit is at least 𝑟ଵ% 

greater than opportunity cost and that the processing facility j produces 
SAF only if the price-offer from the airlines is $ 𝑟ଶ greater than the 
break-even, net supply-chain welfare is:

• 𝑐௘ is the environmental cost of emission in $/ton CO2e, and 𝐸௅஼஺ denotes 
total life-cycle assessment (LCA) based emission from SAF in ton 
CO2e. 𝑃𝑆ிௌ and 𝑃𝑆ோ௃ி are surpluses of feedstock producer and SAF 
processor whereas 𝐶𝑆ிௌ and 𝐶𝑆ோ௃ி are surpluses of feedstock and SAF 
consumers, respectively.

• Assuming availability of processor-based carbon credit, the processor 
influences the optimal decisions of the farmers through its own decisions, 
changing the net welfare of the SAF sector.

• Total carbon credits is proportional to the GHG emission reductions 
achieved using SAF compared to energy-equivalent conventional jet fuel 
(CJF) on LCA basis.

• For the carbon credit scenarios considered, a 𝑟ଷ% of the total carbon 
credits per gallon of SAF was used as an additional margin in 
determining the SAF contract price.

𝑊𝑒𝑙𝑓𝑎𝑟𝑒 ൌ 𝐶𝑆𝐹𝑆 ൅ 𝑃𝑆𝐹𝑆 ൅ 𝐶𝑆𝑅𝐽𝐹 ൅ 𝑃𝑆𝑅𝐽𝐹 െ 𝑐𝑒 𝐸𝐿𝐶𝐴                                   ሺ3ሻ 

Table 1. Cellulosic ATJ Conversion Parameters

• The optimization is driven by SAF demand assumed to be 50% of current 
CJF consumption (i.e. 136 million gallons) at Memphis International 
Airport (MEM).

• Three different carbon credit (CC) scenarios are used to evaluate the 
impact of potential carbon markets compared to the Baseline (no carbon 
credit).

Note: 2016-A and 2017-A denote RIN credits for cellulosic biofuel based on average price for 2016 and 
2017, respectively. CalCaT-L, CalCaT-H and EUETS-H denote lowest carbon price in the California 
Cap-and-Trade program, highest carbon price in the California Cap-and-Trade program and highest 
carbon price in the European Union Emission Trading System, respectively. 

ATJ product Conversion yield Unit 
SAF 26.72 gallon/ton
Cellulosic-gasoline 5.65 gallon/ton
Cellulosic-diesel 2.93 gallon/ton
ATJ product Conversion cost Unit
SAF 1.89 $/gallon
ATJ product Conversion GHG Unit
SAF 2.80 kgCO2e/gallon

RIN credits
RIN price Unit Level
2016-A $/RIN 1.85
2017-A $/RIN 2.69

CC scenarios
Carbon credit Unit Level
CalCaT-L $/tonCO2e 11.58
CalCaT-H $/tonCO2e 22.85
EUETS-H $/tonCO2e 42.56

Table 2. RIN Credits and CC Scenarios

Fig. 1 Optimal land use and facility 
locations

Fig. 2 Margins of feedstock suppliers
Note: Number in the parenthesis refers the amount of 
feedstock suppliers 

Solutions of the Baseline Stackelberg Model
• The SAF processor’s cost is $1.16 billion whereas the aggregate profit of farmers is 

around $16.88 million annually.
• A total of 657 thousand acres farmland is used for feedstock production including 

382 thousand acres of pasture land (Fig. 1).
• More than 57% of farmers received a margin ranging from 10 to 47% over their 

opportunity costs of land conversion (Fig. 2).

• The SAF conversion has the highest GHG emissions (i.e. around 380 thousand tons of 
CO2e) whereas land use change sequestered above 57 thousand tons of CO2e GHG 
emissions.

• Accounting for GHG emissions, there is a net supply-chain welfare of approximately 
$4.29 million for the Baseline with no surplus to the airlines.

Optimal Solutions for CC Scenarios vs Baseline
• The processor’s cost decreased by $17.65, $32.57, and $59.50 million for CalCaT-L, 

CalCaT-H, and EUETS-H scenarios, respectively, compared to Baseline. 
• Total farmer profit declined by $5.88, 5.90, and 10.45 million for CalCaT-L, CalCaT-

H, and EUETS-H scenarios, respectively, compared to Baseline.
• Carbon credits provide farmers incentives to use more crop lands but less pasture lands 

for switchgrass production (Fig. 3).
• Land use change sequestered 31 to 47 thousand tons more of CO2e GHG emissions for 

CC scenarios compared to Baseline.

Fig. 3 Difference in land use for CC scenarios against Baseline
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Fig. 4 Difference in welfare for CC scenarios against Baseline

• Airlines’ surpluses increased by $16.12, $29.55, and $53.79 million for the 
CalCaT-L, CalCaT-H, and EUETS-H scenarios, respectively, compared to the 
Baseline (Fig. 4).

• The net supply-chain welfare increased by $12.71, $27.61, and $50.62 million 
for the CalCaT-L, CalCaT-H, and EUETS-H scenarios, respectively, compared 
to the Baseline (Fig. 4).

Economic Feasibility and GHG Emission Abatement Cost
• The total LCA-based GHG emissions reduction through displacement of the 

fossil fuels with the SAF products is 62.5% to 65% . 
• With the 2016-A RIN credit, the implicit subsidy from airlines is $1.89 to 

$1.49/gallon, equivalent to abatement costs of $198 to $151/ton CO2e.

• Carbon credit induced farmers to convert more crop lands with high 
opportunity costs into feedstock production, resulting in lower farmers’ 
surplus.

• However, carbon credit led a net welfare gain to the SAF sector, primarily 
due to increment in the airlines’ surplus (equivalently, reduction in the 
processor’s cost).

• The SAF and its co-products achieved a 62.5% LCA-based GHG emissions 
reduction. The GHG emissions reduction increased to 65% with carbon 
credit through displacement of the CJF and fossil fuels.

• Thus, carbon credit had positive influence on aviation GHG emissions 
reduction, and net welfare of SAF sector. However, RIN credits heavily 
influenced the economic feasibility of SAF.
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Note: PS-FS and PS-SAF denote surplus for feedstock producer, surplus for SAF producer, 
and surplus for SAF consumer, respectively.


