Aircraft Technology Modeling and Assessment Project 10

FAA Project Manager:	Rangasayi Halthore, Laszlo Windhoffer
Georgia Tech (Lead University):	Dimitri Mavris (PI), Jimmy Tai (Co-PI)
	REs: Holger Pfaender, Mohammed Hassan
	GRAs: Edan Baltman, Mengzhen Chen, Thomas Dussauge, Taylor Fazzini, Barbara Sampaio Felix, Rick Hong, Nikhil Iyengar, Kevyn Tran
Purdue:	William Crossley, Daniel DeLaurentis (PIs)
	GRAs: Hsun Chao, Samarth Jain, Kolawole Ogunsina

Opinions, findings, conclusions and recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of ASCENT sponsor organizations.

Team Approach to Tasks

Overall Objective: Investigating fleet impact of introducing supersonic transport (SST) in terms for fuel burn, emissions and noise, including sonic boom for various scenarios

	Objectives	Georgia Tech	Purdue
1	Fleet Assumptions & Demand Assessment	Identify supersonic demand drivers and supporting airports and project demand for all scenarios Expand to international airports	Estimate latent demand and flight schedules for supersonic aircraft
2	Preliminary Vehicle Environmental Impact Prediction	Develop estimates of KEIs for supersonic aircraft relative to current technology subsonic aircraft, Develop estimates of likely operating altitudes	Support with expert knowledge
3	AEDT Vehicle Definition	Test current version of AEDT ability to analyze existing supersonic models Work with AEDT developers to understand the required modifications to support supersonic vehicles	N/A
4	Vehicle and Fleet Assessments	Apply GREAT to estimate impact of supersonics in terms of fuel burn, water vapor, and LTO NOx for a combination of vehicles and scenarios	Apply FLEET to estimate impact of supersonics in terms of fuel burn, water vapor, and LTO NOx
5	EDS Vehicle Modeling	Create 2 EDS supersonic vehicle models with boom signatures	Support with expert knowledge

GEORGIA TECH EFFORTS

GT Task 1: Potential Supersonic Routes

"Will Boom Supersonic's new aircraft have the same fate as the Concorde?" 3/5/2018, boomsupersonic.com

2015 to 2050 Forecast >55 Passengers Daily Each Way, >1500nmi, Great Circle, Unrestricted

GT Task 1: Fleet Assumptions and Demand Assessment

GT Task 2: Preliminary Vehicle Environmental Impact Prediction

- Developed conceptual design dashboard
 - Constraint analysis
 - Mission analysis
- Calibrated on Concorde data

M=1.4 10 passenger SST

- Larger wing
- Larger engine (3 vs 4)
- Improved SFC
- Improved L/D

M=2.2 55 passenger SST

- Larger engine (3 vs 4)
- Improved SFC
- Improved L/D

GT Task 4: Fleet Impact Assessment

Modeling Assumptions:

Large variability in 2050 fuel use due to assumptions...

Relative increase in 2050 fuel used (rel. 2005 %) due to supersonic flights

Goal: Reduce uncertainty by improving estimates

7

9

GT Task 5: EDS Vehicle Modeling

- Two classes: 10 & 55 Passenger Class SSTs
- Aircraft Design (OpenVSP & StarCCM+)
 - Geometry definition
 - High speed drag polars (inviscid)
 - Preliminary stability analysis
 - Shock locations
- Engine Design (NPSS)
 - Mixed Flow Turbofan architecture
 - Size engine for multiple design points
 - Power managed for mission analysis

- OpenVSP = Open Vehicle Sketch Pad
 - Conceptual, parametric geometry tool
- StarCCM+
 - Commercial (Siemens PLM) CFD tools

- Mission Analysis (FLOPS)
 - Weights estimation
 - Mission profile
 - Overall synthesis and sizing

- FLOPS = FLight OPtimization System
 - NASA mission analysis tool
- NPSS = Numerical Propulsion System Simulation
 - Object oriented framework used for engine simulation

GT Task 5: EDS Vehicle Modeling

10 Passenger Class SST

- Mission Definition:
 - Design Range: 4000 nmi
 - Cruise Altitude: 55,000 ft
 - Supersonic cruise: Mach 1.4
 - Subsonic cruise: Mach 0.95
- Two cruise Mach numbers for over-water and over-land missions
- Wing trailing edge sweep selected to control leading edge vortex separation
- 30 ft cabin
- Aft-podded engines to avoid landing gear interference
- Area-ruled body to minimize wave drag and shocks
- 60 deg single-swept wing to balance low and high-speed cruises
- T-tail to avoid horizontal tail masking from engines & wings

GT Task 5: EDS Vehicle Modeling

55 Passenger Class SST

- Mission Definition
 - Design Range: 4500 nmi
 - Cruise Altitude: 55,000 ft
 - Cruise Mach number: 2.2
- Cabin length: 70 ft

- Engine inlet on top of the fuselage to avoid landing gear interference and some noise shielding
- Area-ruled body to minimize wave drag and shocks
- Double delta wing to accommodate performance at both supersonic and subsonic cruise
- Horizontal tail not included because trailing edge of wings are aft enough to be used as both ailerons and elevators
- Three engines to reduce risk in the event of OEI (one engine inoperative)

Summary: Georgia Tech Efforts

- Improved demand modeling
 - Distributional analysis of Value of Travel Time Savings
 - Reference demand model development to be applied to all potential markets
- Tool Development
 - Conceptual trade-offs for supersonic vehicle designs
 - Lots of technical lessons learned
 - Expanding scope of GREAT capabilities
 - Additional classes of vehicle and regions
 - 55 passenger class vehicle model anticipated to be by second quarter of 2019
- Fleet-level CO₂ emissions
 - GREAT can predict supersonic fleet
 - Trying to reduce uncertainties on key assumptions
 - Demand
 - Interactions with subsonic scenarios
 - Vehicle environmental performance

Next Steps – Georgia Tech

- Task 1:
 - Investigate demand and subsonic service response options
 - Apply generalized demand switching model to potential routes
 - Finalize SST business jet forecast model
- Task 2:
 - Support design trade offs for task 5
- Task 3:
 - Finalize white paper
 - Support AEDT future capability planning
- Task 4:
 - Update fleet analysis with improved demand model and high fidelity vehicle data
- Task 5: EDS Vehicle Modeling
 - Complete engine modeling
 - Initiate LTO noise modeling
 - Initiate boom modeling
 - Test out AEDT coefficient generator
 - Begin coordination with ASCENT project 47

PURDUE EFFORTS

Fleet-Level Environmental Evaluation Tool - FLEET

- A system dynamicsinspired simulation to evolve airline fleet, passenger demand, environmental impact over time
- At core is an allocation problem to simulate a profit-seeking airline
 - 1,940 routes connects a subset of WWLMINET 257 airports
 - US-domestic routes
 - Int'l routes with direct flight originating or ending at US airport
- FLEET represents aircraft by class (number of seats) and by technology age

Task 1: Incorporating Supersonic Aircraft in Allocation Problem for FLEET

Task 1: Characterizing Supersonic Demand and Routes

- As a starting point to estimate demand, build on BOOM statement • about same fares as today's business class
 - 5% of passengers on a given flight pay business class or above
 5% correlates with data for domestic flights (DB1B 2016)
 - - All domestic flights, 4.3% of reported tickets business or above
 - Domestic flights between 2350 and 4500 nmi, 6.89% business or above
 - For FLEET, these are the only potential supersonic passengers
 - FLEET uses BTS reported demand as the basis for the allocation problem, so supersonic FLEET demand reflects passengers carried on US-touching routes by US flag carriers
- Apply filters to identify potential supersonic routes
 - Great circle distance between 1,500 and 4,500 nmi
 - Routes with \geq 75% overwater; 75% chosen using team's engineering judgement
 Distance flown adjustment to
 - minimize block time
- 98 potential routes in FLEET network

Simple overwater route adjustment strategy using JFK-LHR

Task 1: Supersonic Route Network for FLEET

- Placeholder 55-pax supersonic aircraft model for initial studies
 - Assumes "noisy" aircraft, can only fly supersonic over water at M = 2.2 (subsonic overland at M = 0.95)
 - Supersonic aircraft fuel burn currently uses the Class 5 (large twin aisle) subsonic fuel burn on the minimum flight time routes as a placeholder
 - Will replace with refined vehicle model when available

- Current Trends Best Guess (CTBG) ٠ scenario from subsonic-only ASCENT 10 work
 - Supersonic EIS in 2025, 2035, 2045
 - Supersonic allocation before subsonic
- With current modeling:
 - 2050 fleet CO₂ emissions higher with supersonic aircraft than subsonic only
 - Supersonic aircraft changes utilization, retirement and acquisition of subsonic aircraft

Task 4: Fleet Supersonic Allocations – Year 2038

- 2038 selected as a year of interest; second generation supersonic aircraft just entering service in this simulation •
- Airline serves 75 of 98 routes with supersonic aircraft ٠
- Top 5 high-demand supersonic routes in FLEET network Only US-touching routes, operated by US flag carriers only FLEET passenger demand builds upon reported BTS data

* Revenue and cost data normalized w.r.t. to HNL – LAX revenue data (supersonic only)

Preliminary data – do not cite or quote

Route	Daily Demand	# of Trips
HNL – LAX	634	11.33
HNL – SFO	382	6.67
HNL – NRT	298	5.33
JFK – LHR	296	5.33
NRT – SFO	256	4.67

Number of trips indicates allocated trips between cities per day, over three-day period, for aircraft type

Summary: Purdue Efforts

- Purdue efforts in three areas for current phase of project
 - Characterizing supersonic demand and routes
 - US-touching routes, US flag carriers
 - "Business class and above" concept for 5% of demand
 - Route-filtering with percentage of flight overwater
 - Supersonic ticket price model
 - Range-dependent model based upon "as offered" prices for business class and above
 - Including supersonic aircraft
 - Allocation approach that first satisfies supersonic demand then subsonic demand to serve all total demand
 - Supersonic aircraft production and acquisition model
- Recent results show the ability of FLEET to allocate supersonic aircraft on profit-earning routes only
 - Introduction of supersonic aircraft leads to different allocation of subsonic aircraft
 - Allocation results give a pseudo-schedule for the FLEET airline

Next Steps - Purdue

Short Term (Remainder of Year 2):

- Examine transpacific supersonic routes with refuel stop •
- Replace Purdue placeholder aircraft with multiplier approach to • match GT early fleet studies
- Higher density subsonic aircraft to FLEET airline on routes where • supersonic aircraft also operate

Long Term (Year 3):

- Develop and implement passenger "effective cost" model ٠
- Commercial supersonic vehicle types and operations •
 - Type 1 aircraft: subsonic overland
 - Type 2 aircraft: Mach cut-off (say *M*=1.15) overland, higher *M* over ocean
 Type 3 aircraft: High supersonic entire mission

 - Larger capacity aircraft as needed / desired
- Implement other emissions & airport noise predictions (contingent • on receiving supersonic aircraft and powerplant models from Georgia Tech colleagues)
- Business jet class supersonic vehicle types and operations •