FAA CENTER OF EXCELLENCE FOR ALTERNATIVE JET FUELS & ENVIRONMENT

Development of Aviation Air Quality Tools for Airport-Specific Impact Assessment Project 19

Lead Investigator: S. Arunachalam, University of North Carolina at Chapel Hill

Project Manager: Jeetendra Upadhyay

Spring Advisory Board Meeting April 18 – 19, 2019 Atlanta, GA

Opinions, findings, conclusions and recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of PARTNER sponsor organizations.

Motivation

Previous PARTNER work showed that aviation-attributable health impacts due to $PM_{2.5}$ will be ~6x in 2025 compared to 2005

• Woody et al, 2011, Levy et al, 2012

Recent measurement campaigns at several airports have shown significant levels of Ultrafine Particulate Matter (UFP) due to aircraft LTO operations at LAX, Boston, Amsterdam, Rome, Tianjin, etc.

- Hudda et al 2014, 2016; Staffogia et al, 2016; Ren et al, 2016
- FAA's Aspirational Goal: Achieve an absolute reduction in aviation emissions induced "significant health impacts"
- For ICAO's Committee on Aviation Environmental Protection (CAEP) tools to assess global aviation-attributable health impacts needed
- In both cases, science-based tools are required to report year-over-year changes in health impacts
- Need to identify airport-specific trends in adverse health impacts for developing mitigation strategies

Objectives

- Long term
 - Develop tools for AQ and health impacts reporting and analyzing potential aviation policy scenarios for FAA and ICAO CAEP
- Near term
 - T1: Adapt modeling tools to estimate AQ impacts due to aviation emissions NAS-wide to facilitate year-to-year reporting and scenario analysis
 - T2: Assess/quantify modeled aviation-attributable UFP, and compare with new measurements from field campaign at Boston Logan airport
 - T3: Develop new modeling framework for dispersion modeling of aircraft sources during LTO cycles

Schedule and Status

- Task 1: NAS-wide and Airport-specific analyses
 - With revised AEDT inputs, implement new higher resolution framework for 2011, 2015 [Ongoing]
 - Assess impacts of changes in PM_{2.5} size distributions [Completed]
- Task 2: Perform monitor-model comparisons of UFP from Boston Logan airport
 - Using SCICHEM [Ongoing]
 - Using CMAQ [Just getting started]
- Task 3: Develop new framework for dispersion modeling [Just getting started]

Task 1 Objective

Develop NAS-wide modeling platform for the years 2011 and 2015 at fine resolution of 12x12 km

- CMAQ model configuration
 - 2011: CMAQv5.1 with CB05 chemistry at 12x12 km resolution
 - 2015: CMAQv5.2.1 with CB6 chemistry at 12x12 km resolution
- New higher resolution application for the entire U.S.
 - 12x12-km instead of 36x36-km in prior work
 - Over 10x increase in computational resources
- Results compared across 3 years: 2005, 2011, and 2015

Accomplishments from last meeting:

 In-depth analyses to interpret increases and decreases in air quality impacts at individual airports

Task 1 Results

Concentrations at airport-containing grid cells

- Increases in NO_X emissions over the model years results in a larger O₃ titration effect at airport-containing grid cells
- PM_{2.5} increases seen in most airport grid-locations

Air Quality Modeling Pla	tform Differences	Air Quality Results	
*Only used for comparison in health impacts portion of dynamic evaluation	[1] Levy et al. 2012 [2] Woody et al. 2011		7

NAS-wide Aviation Emissions Trends

U.S. aviation trends indicate a sharp decrease in flight count and fuel consumption after 2005, with a gradual increase after 2014

Figures provided by FAA

NAS-wide LTO Emissions for Prior Platform and Current Platform

LTO aircraft	t emissions	Prior Platform		Current Platform		
Species		2005	2025	2005	2011	2015
NO _X	ktons yr -1	92.2	198.6	83.6	70.1	82.8
	% change from 2005		115%		-16%	-1%
	% of Total Emissions			1.1% (7,600)	1.3% (5,392)	1.6% (5,175)
SO ₂	ktons yr -1	7.9	16.7	7.4	6.0	6.8
-	% change from 2005		111%		-19%	-8%
	% of Total Emissions			0.04% (18,500)	0.07% (8,571)	0.12% (5,667)
PEC	ktons yr -1	0.33	0.58	0.28	0.18	0.20
	% change from 2005		76%		-36%	-29%
	% of Total Emissions			0.04% (700)	0.03% (600)	0.03% (667)
TOG	ktons yr -1	14.8	26.4	14.3	10.1	13.5
	% change from 2005		78%		-29%	-6%
	% of Total Emissions			0.03% (47,667)	0.06% (16,833)	0.05% (27,000)

Prior platform with EDMS inventory has higher emissions than all AEDT inventories in current platform Prior platform 2025 estimates represents 2.27 times higher activity than 2005 2005 AEDT inventory has higher emissions than 2011 and 2015 AEDT inventories, with 2011 having the lowest of the three 2015 AEDT inventory makes up the largest percent of total emissions during its year for NO_x and SO₂ emissions

9

LTO Emissions at the Airport-Containing Grid Cell

10

LTO Emissions as a Percent of Total Emissions at Airport-containing Grid Cell

Difference Between Grid Cell Resolution

36km grid cell resolution contains much more of the surrounding area which can dilute aircraft emissions' impacts in the airport-containing grid cell

12

Domain-wide Aviation Attributable PM_{2.5}

-0.008 -0.004 0 0.004 0.008 µg/m³

	2005	2011	2015
Domain-wide average (µg/m³)	0.0023	0.0026	0.0027
Percent of total PM _{2.5}	0.03%	0.05%	0.04%

Domain-wide average aviation attributable PM_{2.5} increases each year Aviation attributable $PM_{2.5}$ as a percent of total $PM_{2.5}$ is highest in 2011

13

Airport-specific Aviation Attributable PM_{2.5}

Airport-specific Aviation Attributable PM_{2.5}

Differences in aviationattributable PM_{2.5} at the airport-containing grid cell level can be explained by: Grid cell resolution Gas-phase chemical mechanism Aerosol treatment in model

15

Two studies (Woody et al. 2013, Arunachalam et al. 2011) looked at the effect of three grid cell resolutions (36km, 12km, and 4km) on aviation-attributable PM_{2.5}

Fig. 3. Modeled speciated daily average speciated $PM_{2.5}$ contributions by mass from aircraft emissions at the grid cell containing the ATL airport on June 6 and 7, 2002 for sulfate (ASO4), primary organics (POA), secondary organics (SOA), nitrate (ANO3), ammonium (ANH4), elemental carbon (AEC), and crustal (A25) aerosols.

16

Coarser grid cell resolutions suppress rate of secondary organic aerosol (SOA) formation

Gas-phase chemical mechanism

Aircraft TOG is converted to VOC which is speciated according to FAA/EPA 2009 Profile

ALD2	•Acetaldehyde	
ALDX	 Propionaldehyde and higher aldehydes 	
ETH	•Ethene	
ETHA	•Ethane	
FORM	•Formaldehyde	
IOLE	•Internal olefin carbon bond (R-C=C-R)	
MEOH	•Methanol	
OLE	•Terminal olefin carbon bond (R-C=C)	
PAR	•Paraffin carbon bond (C-C)	
TOL	•Toluene and other monoalkyl aromatics	
XYL/XYLMN	•Xylene	
ACET	•Acetone	
BENZ	•Benzene	
ETHY	•Ethyne	
NAPH	Naphthalene	
PRPA	•Propane	
SOAALK	Precursor to alkane SOA	

An illustrative point regarding model specific gas-phase and aerosol-phase chemistry^a

Model specific details in CMAQv4.6

- ★ Anthropogenic SOA precursors undergo oxidation *only* with OH
- ★ Biogenic SOA precursors undergo oxidation with OH, NO₃⁻, O₃, and odd oxygen
- ★ Change in OH radicals has greater influence on anthropogenic SOA
- ★ High and low-NO_X pathways only for anthropogenic SOA

Fig. 6. Changes in (a) anthropogenic (AORGA), biogenic (AORGB), and (b) total SOA concentrations due to aircraft emissions at ATL. Changes in anthropogenic SOA concentrations formed from low and high-NO_x pathways at ATL (c) due to aircraft emissions and (d) due to emissions from all sources.

As the CMAQ model develops, the chemical and physical processes evolve to capture the most up-to-date science

Aviation-attributable POA 2015 2011 CMAQv5.1 with CB05 CMAQv5.2.1 with CB6 289 286 0.0010 0.0010 271 267 253 0.0008 0.0008 248 235 229 0.0006 0.0006 217 210 199 191 0.0003 0.0003 181 172 8 163 0.0001 0.0001 153 145 . 134 127 -0.0001 -0.0001 115 109 96 -0.0003 -0.0003 91 77 73 -0.0006 -0.0006 58 55 39 37 -0.0008 -0.0008 20 19 1 1 -0.0010 -0.0010 52 103 154 205 256 307 115 172 229 358 409 58 286 343 400 457 1 1 **Aerosol** APOCIJ APOCI+APOCJ calculations in APOCIJ APOCJ the models ALVPO1J/1.39+ASVPO1J/1.32+ASVPO2J/1.26+ASVPO3J/1.21 +AIVPO1J/1.17+ALVPO1I/1.39+ASVPO1I/1.32+ASVPO2I/1.26 LTO emissions **positively** contribute to POA in the LTO emissions negatively contribute to POA in the 2011 CMAQv5.1 simulation 2015 CMAQv5.2.1 simulation

Biogenic and Anthropogenic VOC-derived SOA

SOA formation differs under high/low-NO_X conditions

Anthropogenic VOC-derived SOA

Anthropogenic VOC-derived SOA yield is suppressed under high-NO $_{\rm X}$ conditions

Biogenic VOC-derived SOA

Biogenic VOC-derived SOA yield is enhanced under high- $NO_{\rm X}$ conditions

Examples of Biogenic and Anthropogenic VOCs

Aviation-attributable anthropogenic-VOC derived SOA

Aviation-attributable biogenic-VOC derived SOA

Task 2: UFP Study at Boston Logan

Objective

• Develop high resolution model application for Boston Logan and compare with UFP measurements from field study at Logan

Approach

- Phase 1: Develop SCICHEM application
 - Presented at last meeting
 - Several limitations found with SCICHEM, and being wrapped up
- Phase 2:
 - Create new Logan LTO inventory using AEDT
 - Create WRF-SMOKE-CMAQ modeling application @12/4/1-km
 - Use updated CMAQ with new nucleation mode for aerosols, and new aircraftspecific module for accurate particle size distribution for aircraft emissions
 - Perform model-monitor comparisons

Task 3: New Dispersion Modeling Framework

- Objective
 - Demonstrate that a robust, improved pollutant dispersion model for aircraft can be developed for U.S. regulatory compliance purposes
- Known limitations
 - Several studies have shown limitations with AERMOD the current local scale dispersion model used for airport-level assessments
 - Problems identified in issues related to:
 - Source representation: area vs. volume
 - Lack of plume rise for hot buoyant plumes
 - Limited treatment of chemistry, etc.
- Next steps
 - Perform comprehensive literature review including various modeling approaches – line, puff, line-puff, etc. – in existing models
 - Review current approaches for developing airport-level emissions inventories in AEDT/AERMOD
 - Develop initial design of new framework for new modeling approach
 - Include itemized list of research tasks needed to develop framework

Summary

• Summary statement

- Modeled impacts of LTO emissions on the formation of PM_{2.5} shows a modest 17% increase in domain-wide PM_{2.5} from 2005 to 2015
- Impacts at the airport-containing grid cell level are primarily determined by modeled grid cell resolution, gas-phase chemical mechanism, and aerosol treatment within the model

• Next steps

- Finalize comparisons of current year-over-year trajectory with previous trajectory from 2005 to 2025
- Start high resolution model application for Boston Logan with enhanced modeling system for model-measurement assessment
- Start review of dispersion model limitations to develop new framework

Interfaces and Communications

- External
 - Multiple presentations at Annual CMAS Conference, and UC Davis Aviation Noise and Emissions Symposium
 - Additional presentations:
 - NC-BREATHE Conference, April 2019
 - National Aviation University, Kyiv, Ukraine
- Within ASCENT
 - ASCENT NOI 18 (BU)

Contributors

- UNC: S. Arunachalam, C. Arter, M. Chowdhury, B.H. Baek, D. Yang
- BU: Jonathan Levy, Kevin Lane and team
- U.S. DOT Volpe Center for AEDT inventories
- U.S. EPA: Alison Eyth for NEI inventories