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Previous PARTNER work showed that aviation-attributable health impacts due to PM, s
will be ~6x in 2025 compared to 2005

« Woody et al, 2011, Levy et al, 2012

Recent measurement campaigns at several airports have shown significant levels of
Ultrafine Particulate Matter (UFP) due to aircraft LTO operations at LAX, Boston,
Amsterdam, Rome, Tianjin, etc.

Hudda et al 2014, 2016; Staffogia et al, 2016; Ren et al, 2016

« FAA's Aspirational Goal: Achieve an absolute reduction in aviation emissions induced
“significant health impacts”

« For ICAO's Committee on Aviation Environmental Protection (CAEP) tools to assess
global aviation-attributable health impacts needed

> In both cases, science-based tools are required to report year-over-year changes in
health impacts

> Need to identify airport-specific trends in adverse health impacts for developing
mitigation strategies
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e Long term

« Develop tools for AQ and health impacts reporting and analyzing
potential aviation policy scenarios for FAA and ICAO CAEP

 Near term

« T1: Adapt modeling tools to estimate AQ impacts due to aviation
emissions NAS-wide to facilitate year-to-year reporting and scenario
analysis

« T2: Assess/quantify modeled aviation-attributable UFP, and compare
with new measurements from field campaign at Boston Logan airport

« T3: Develop new modeling framework for dispersion modeling of
aircraft sources during LTO cycles
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Schedule and Status ASCENT

« Task 1: NAS-wide and Airport-specific analyses

» With revised AEDT inputs, implement new higher resolution
framework for 2011, 2015 [Ongoing]

 Assess impacts of changes in PM, : size distributions [Completed]

 Task 2: Perform monitor-model comparisons of UFP from
Boston Logan airport
« Using SCICHEM [Ongoing]
* Using CMAQ [Just getting started]

 Task 3: Develop new framework for dispersion modeling [Just
getting started]
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Develop NAS-wide modeling platform for the years 2011 and 2015 at
fine resolution of 12x12 km

e CMAQ model configuration
e 2011: CMAQv5.1 with CBO5 chemistry at 12x12 km resolution
e 2015: CMAQv5.2.1 with CB6 chemistry at 12x12 km resolution

* New higher resolution application for the entire U.S.
e 12x12-km instead of 36x36-km in prior work
e Over 10x increase in computational resources

 Results compared across 3 years: 2005, 2011, and 2015

Accomplishments from last meeting:

« In-depth analyses to interpret increases and decreases in air
quality impacts at individual airports



Task 1 Results
Concentrations at airport-containing grid cells
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Air Quality Modeling Platform Differences Air Quality W

Results

*Only used for comparison in health [1] Levy et al. 2012 ;
impacts portion of dynamic evaluation [2] Woody et al. 2011



NAS-wide Aviation Emissions Trends
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U.S. aviation trends indicate a sharp decrease in

flight count and fuel consumption after 2005, with a
gradual increase after 2014

Figures provided by FAA



NAS-wide LTO Emissions for Prior Platform and Current Plat

form

LTO aircraft emissions Prior Platform Current Platform

2005 2005 [ELIEEE
83.6

o1 | 2015 |

NO, ktons yr - 92.2 198.6 70.1 82.8

% change from 2005 115% -16% -1%

% of Total Emissions 1.1% (7,600) 1.3% (5,392) 1.6% (5,175)
SOZ ktons yr - 7.9 16.7 7.4 6.0 6.8

% change from 2005 111% -19% -8%

% of Total Emissions 0.04% (18,500) 0.07% (8,571) 0.12% (5,667)
PEC ktons yr -1 0.33 0.58 0.28 0.18 0.20

% change from 2005 76% -36% -29%

% of Total Emissions 0.04% (700) 0.03% (600) 0.03% (667)
TOG ktons yr - 14.8 26.4 14.3 10.1 13.5

% change from 2005 78% -29% -6%

% of Total Emissions 0.03% (47,667) 0.06% (16,833) 0.05% (27,000)

Prior platform with EDMS inventory Prior platform 2025 estimates 2005 AEDT inventory has higher
has higher emissions than all AEDT represents 2.27 times higher emissions than 2011 and 2015
inventories in current platform activity than 2005 AEDT inventories, with 2011

having the lowest of the three

2015 AEDT inventory makes up the
largest percent of total emissions during
its year for NOy and SO, emissions




LTO Emissions at the Airport-Containing Grid Cell
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LTO Emissions as a Percent of Total Emissions at Airport-containing Grid Cell
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LTO emissions as a percent of total emissions are highly dependent on grid cell size, 2005 percentages in a 36km

grid cell are much smaller than 2011/2015 percentages in 12km grid cells



Difference Between Grid Cell Resolution
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36km grid cell resolution contains much more of the surrounding area which

can dilute aircraft emissions’ impacts in the airport-containing grid cell
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Domain-wide Aviation Attributable PM, .
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Domain-wide average aviation attributable

PM, s increases each year
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of total PM, s is highest in 2011



Airport-specific Aviation Attributable PM, :
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Airport-specific Aviation Attributable PM, :

Differences in aviation-
attributable PM, ; at the

airport-containing grid cell
level can be explained by:
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Two studies (Woody et al. 2013, Arunachalam et al. 2011) looked at

G r‘|d Cel I reSOl ut|o n the effect of three grid cell resolutions (36km, 12km, and 4km) on
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secondary organic aerosol (SOA) formation




Aircraft TOG is converted to VOC which is
speciated according to FAA/EPA 2009 Profile

Impact on SOA formation
ALD2 *Acetaldehyde

ALDX ePropionaldehyde and higher aldehydes
ETH *Ethene

ETHA eEthane
FORM eFormaldehyde

|IOLE eInternal olefin carbon bond (R-C=C-R)

MEOH eMethanol

OLE eTerminal olefin carbon bond (R-C=C)
PAR eParaffin carbon bond (C-C)
TOL sToluene and other monoalkyl aromatics
XYL/XYLMN *Xylene

ACET *Acetone

BENZ *Benzene

ETHY *Ethyne

NAPH *Naphthalene

PRPA *Propane

SOAALK ePrecursor to alkane SOA




An illustrative point regarding model specific gas-phase and aerosol-phase chemistry?

Model specific details in CMAQv4.6

4 Anthropogenic SOA precursors
undergo oxidation only with OH

4 Biogenic SOA precursors undergo
oxidation with OH, NO5", O5, and
odd oxygen

4 Change in OH radicals has greater
influence on anthropogenic SOA

4 High and low-NOy pathways only
for anthropogenic SOA

2Woody et al. 2013
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Fig. 6. Changes in (a) anthropogenic (AORGA), biogenic (AORGB), and (b) total SOA concentrations due to aircraft emissions at ATL. Changes in anthropogenic SOA concentrations
formed from low and high-NOy pathways at ATL (c) due to aircraft emissions and (d) due to emissions from all sources.

As the CMAQ model develops, the chemical and physical

processes evolve to capture the most up-to-date science
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[Aerosol treatment in model ]
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aerosol (POA)
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Aviation-attributable POA

2011 2015

CMAQv5.1 with CB05 CMAQyv5.2.1 with CB6
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Biogenic and Anthropogenic VOC-derived SOA

Biogenic VOC
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Anthropogenic VOC-derived SOA
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under high-NOy conditions

22



Biogenic VOC-derived SOA
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Examples of Biogenic and Anthropogenic VOCs
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Aviation-attributable anthropogenic-VOC derived SOA

CMAQv5.1 with CBO5 CMAQv5.2.1 with CB6
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Aviation-attributable biogenic-VOC derived SOA
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Objective
* Develop high resolution model application for Boston Logan and compare
with UFP measurements from field study at Logan

Approach

* Phase 1: Develop SCICHEM application
» Presented at last meeting
 Several limitations found with SCICHEM, and being wrapped up

* Phase 2:

 Create new Logan LTO inventory using AEDT
 Create WRF-SMOKE-CMAQ modeling application @12/4/1-km

« Use updated CMAQ with new nucleation mode for aerosols, and new aircraft-
specific module for accurate particle size distribution for aircraft emissions

« Perform model-monitor comparisons
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» Objective
* Demonstrate that a robust, improved pollutant dispersion model for aircraft can be
developed for U.S. regulatory compliance purposes

« Known limitations
« Several studies have shown limitations with AERMOD - the current local scale
dispersion model used for airport-level assessments
« Problems identified in issues related to:
» Source representation: area vs. volume
« Lack of plume rise for hot buoyant plumes
« Limited treatment of chemistry, etc.

» Next steps
« Perform comprehensive literature review including various modeling approaches

— line, puff, line-puff, etc. — in existing models
» Review current approaches for developing airport-level emissions inventories in

AEDT/AERMOD
« Develop initial design of new framework for new modeling approach

« Include itemized list of research tasks needed to develop framework
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« Summary statement

* Modeled impacts of LTO emissions on the formation of PM, ; shows a
modest 17% increase in domain-wide PM, s from 2005 to 2015

* Impacts at the airport-containing grid cell level are primarily determined
by modeled grid cell resolution, gas-phase chemical mechanism, and
aerosol treatment within the model

* Next steps

* Finalize comparisons of current year-over-year trajectory with previous
trajectory from 2005 to 2025

 Start high resolution model application for Boston Logan with enhanced
modeling system for model-measurement assessment

* Start review of dispersion model limitations to develop new framework



Interfaces and Communications TAT

« External
— Multiple presentations at Annual CMAS Conference, and UC Davis
Aviation Noise and Emissions Symposium

— Additional presentations:
« NC-BREATHE Conference, April 2019
— National Aviation University, Kyiv, Ukraine

 Within ASCENT
— ASCENT NOI 18 (BU)

Contributors

UNC: S. Arunachalam, C. Arter, M. Chowdhury, B.H. Baek, D. Yang
BU: Jonathan Levy, Kevin Lane and team

U.S. DOT Volpe Center for AEDT inventories

U.S. EPA: Alison Eyth for NEI inventories
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