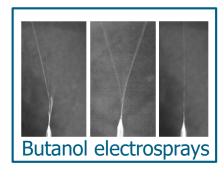
Alternative Jet Fuel Test Database Library Project 33

SOY Presentation: Anna Oldani Lead Investigator: Tonghun Lee Department of Mechanical Science & Engineering

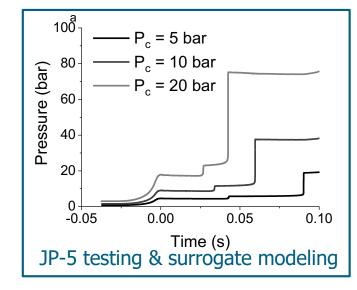
University of Illinois, Urbana-Champaign

Program Manager: Cecilia Shaw


April 18 & 19, 2019 Atlanta, GA

This research was funded by the U.S. Federal Aviation Administration Office of Environment and Energy through ASCENT, the FAA Center of Excellence for Alternative Jet Fuels and the Environment, project 033 through FAA Award Number 13-C-AFJE-UI-015 under the supervision of Cecilia Shaw. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA.

My path to alternative jet fuels


- University of Illinois Urbana-Champaign
 - 2012: BS ABE Hoeft Technology & Management Minor
 - **2014**: MS MechSE Surrogate modeling of alternative jet fuels for study of autoignition characteristics
 - Current: PhD MechSE Physicochemical and performance study of next generation alternative jet fuels

Algae biofuel & carbon sequestration

Global needs necessitate fuel diversification

Airline travel & commerce doubling over next 20 years¹ CORSIA CO₂ mandate 2019 2050 target -50% CO₂ Fuel sourcing instability & market volatility 3000+ fuel convoy deaths 2003-2007²

¹International Air Transport Association (IATA) Press Release No. 62, 2018 ²Army Environmental Policy Institute, Sustain the Mission Project: Casualty Factors for Fuel and Water Supply Convoys 2009

Address three critical facets for AJF expansion & integration

Alternative Jet Fuel Development & Deployment

Alternative Jet Fuel Test Database Physicochemical Properties & Relations

Combustion Performance Evaluations

Support continued AJF development & deployment

AJFTD enables AJF integration through dynamic data accessibility Alternative Jet Fuel Test Database

Physicochemical Properties & Relations

Physicochemical property relations require robust AJFTD resources

Combustion Performance Evaluations

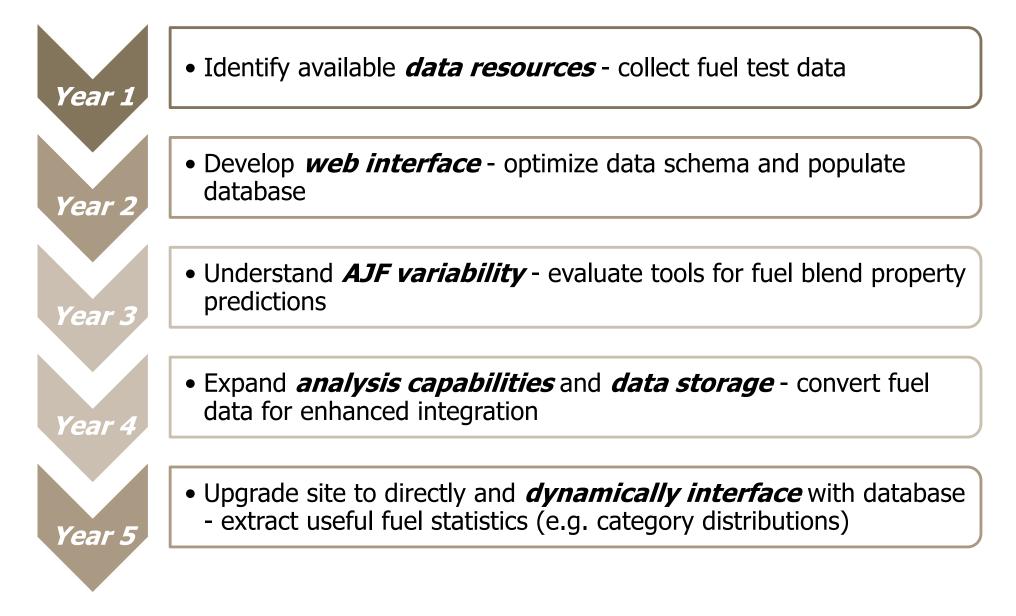
Fuel testing and modeling highlight fuel composition and performance relations **Alternative Jet Fuels Test Database**

Foundational database of current & emerging alternative jet fuels

Goals:

- Compile jet fuel data into comprehensive, centralized knowledgebase
- Integrate knowledge on AJF development path to aid in design and certification of new jet fuels
- **Support alternative fuels research** and certification for national and international multi-stakeholder initiatives
- Increase accessibility to fuel testing data and approval reporting

Focus on critical fuel property & test data



7

AJFTD annual targets & tasks

Fuel property & test data sources

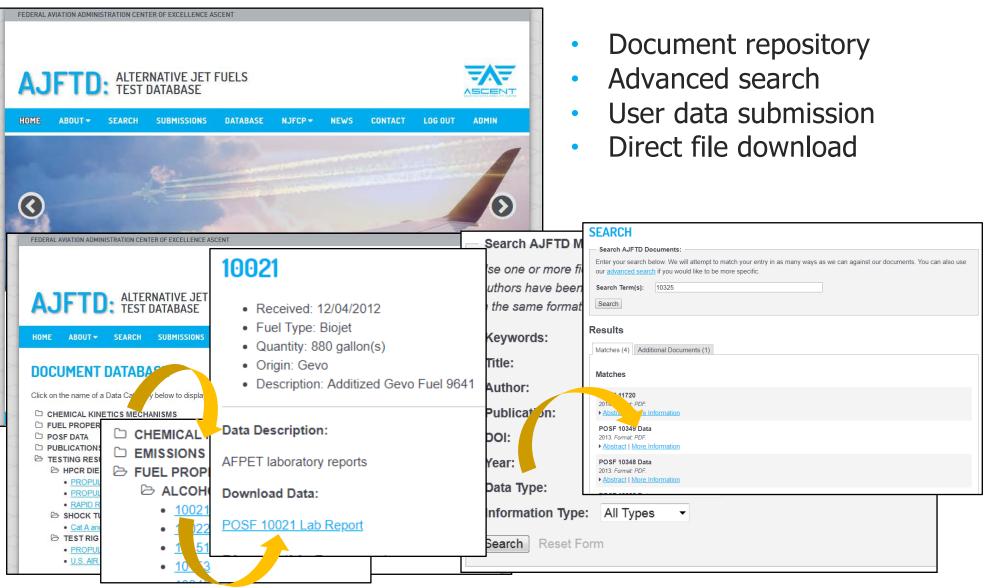
Air Force Research Lab (AFRL)

400+ POSF numbers GCxGC data for 87 fuels

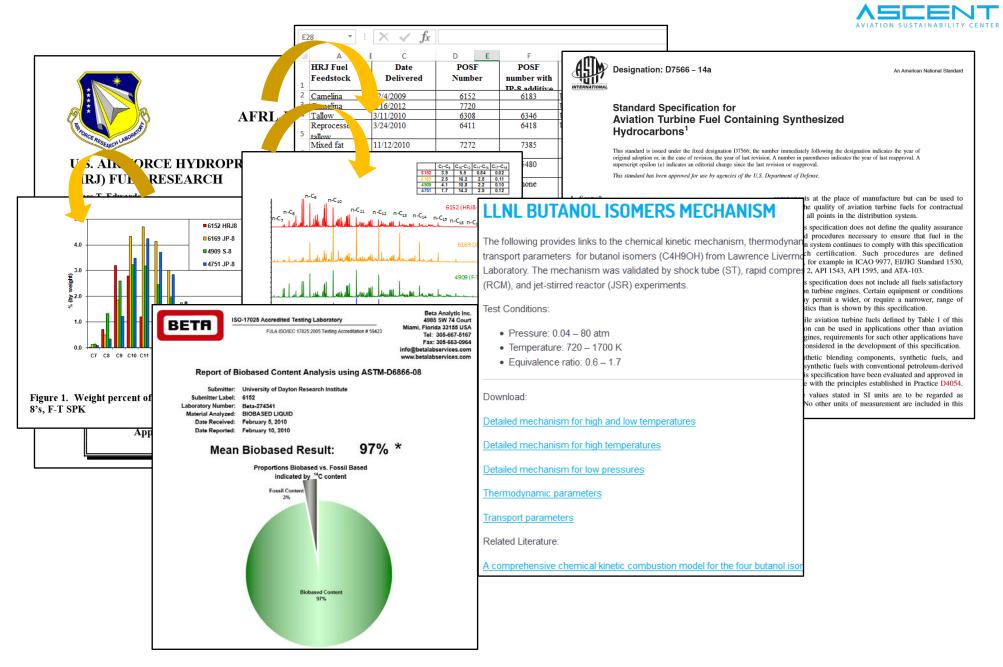
Petroleum Quality Information Systems (PQIS)

• 9,201 fuel records

Metron Aviation


• 14,823 fuel records across 13 domestic airports

NJFCP


• Fuel property and test data for Category A and C fuels

Gen I: user specified queries & file download

Centralized data resource

Data conversion incentives

- Accelerate data retrieval
 - Easily find fuels without searching hundreds of reports
- Enable statistical analyses
 - Develop correlations for global combustion properties
 - Expanded dataset provides more meaningful and robust correlations
- Identify **unusual data** (misreported, outliers, ...)
- Facilitate collaboration with related programs and data sharing (JETSCREEN)

Adaptable NoSQL data structure

Non-Relational (NoSQL)

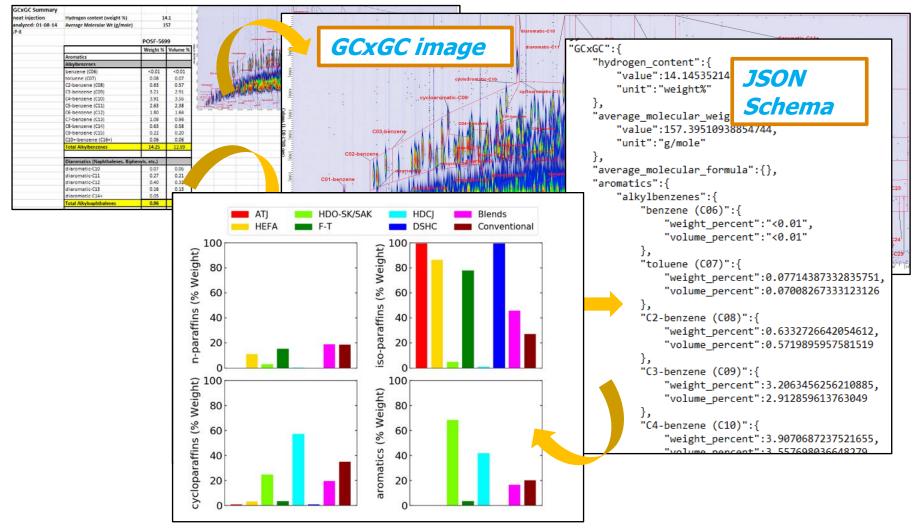
Flexible schema variable data can be easily inserted/altered Relational (SQL)

Structured schema new data must be consistent with predefined structure

AWS @ Illinois partnership
 University maintained – minimize liability, unintended costs

 Connect with databases using JSON format documents

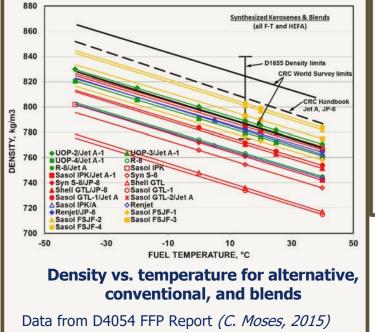
Encapsulate variable information



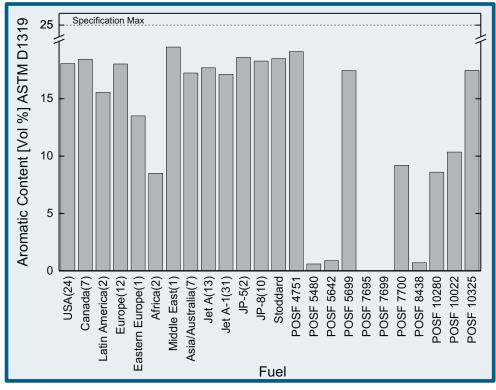
			А		В	"distill. jon":[
		1	fetho	Test	-	{
			41L-ST 004C(1)	Appearance		"ve_evaporated_value":0,
			ASTM D 6045 - 12	Color, Saybolt		"temethod":"D 86",
	Wrigh			Total Acid Number (mg K		lue":"",
Report H		-			UH/g)	JSON
т кероп г				Aromatics (% vol)		Joraced_unite . %,
Case campio no.ile	Date		ASTN	Mercaptan Sulfur (% mas	в)	cime_scamp":"15/03/13 13:01"
JON: GENERAL FUND			ASTM D 4294 - 10	Total Sulfur (% mass)		"unit":"C",
annala, antaristana		8 2	ASTM D 86 - 12	Distillation		"minimum_value":"Report Only"
Sample Submitter: AFRL/ROTF		9		Initial Boiling Point (°C)	},
1790 Loop Road N		10		10% Recovered (°C)		{
Bldg 490		11		20% Recovered (°C)		"volume_evaporated_value":"10",
Wright-Patterson A	AFB, OH 45433	12		50% Recovered (°C)		"test_method":"D 86",
		13		90% Recovered (°C)		"maximum_value":205.0, "value":204.
	ion: AFRL Research Turbine Fuel, Kerose	14		End Point (°C)		value :204, "volume_evaporated_unit":"%",
Specification. Mi	L-DTL-5624V Grade:JI Q		abmitted: 2 gal			"time_stamp":"15/03/13 13:01" "unit":"C", "minimum_value":""
Method	Test			Min Max	Result F	}, {
					-	"volume_evaporated_value":"20"
	Appearance				Pass	rorane_craporacca_rarac r zo
MIL-STD-3004C(1)	Appearance Color, Saybolt			Report Only	Pass +18	"test_method":"D 86",
MIL-STD-3004C(1) ASTM D 6045 - 12		mg K	DH/g)	Report Only 0.015		
MIL-STD-3004C(1) ASTM D 6045 - 12 ASTM D 3242 - 11	Color, Saybolt	(mg K	DH/g)		+18	"test_method":"D 86", "maximum_value":"", "value":212,
MIL-STD-3004C(1) ASTM D 6045 - 12 ASTM D 3242 - 11 ASTM D 1319 - 14	Color, Saybolt Total Acid Number			0.015	+18	"test_method":"D 86", "maximum_value":"", "value":212, "volume_evaporated_unit":"%",
MIL-STD-3004C(1) ASTM D 6045 - 12 ASTM D 3242 - 11 ASTM D 1319 - 14 ASTM D 3227 - 13	Color, Saybolt Total Acid Number Aromatics (% vol)	t mas:		0.015 25.0	+18 0.002 11.2	"test_method":"D 86", "maximum_value":"", "value":212, "volume_evaporated_unit":"%", "time_stamp":"15/03/13 13:01"
MIL-STD-3004C(1) ASTM D 6045 - 12 ASTM D 3242 - 11 ASTM D 1319 - 14 ASTM D 3227 - 13 ASTM D 4294 - 10	Color, Saybolt Total Acid Number Aromatics (% vol) Mercaptan Sulfur (⁸	t mas:		0.015 25.0 0.002	+18 0.002 11.2 0.000	"test_method":"D 86", "maximum_value":"", "value":212, "volume_evaporated_unit":"%", "time_stamp":"15/03/13 13:01" "unit":"C",
MIL-STD-3004C(1) ASTM D 6045 - 12 ASTM D 3242 - 11 ASTM D 1319 - 14 ASTM D 3227 - 13 ASTM D 4294 - 10	Color, Saybolt Total Acid Number Aromatics (% vol) Mercaptan Sulfur (% Total Sulfur (% mas Distillation Initial Boiling	k mas: ss) Point	5)	0.015 25.0 0.002	+18 0.002 11.2 0.000	"test_method":"D 86", "maximum_value":"", "value":212, "volume_evaporated_unit":"%", "time_stamp":"15/03/13 13:01" "unit":"C", "minimum_value":"Report Only"
MIL-STD-3004C(1) ASTM D 6045 - 12 ASTM D 3242 - 11 ASTM D 1319 - 14 ASTM D 3227 - 13 ASTM D 4294 - 10	Color, Saybolt Total Acid Number Aromatics (% vol) Mercaptan Sulfur (* Total Sulfur (% mas Distillation Initial Boiling 10% Recovered (*	e mas: ss) Point °C)	5)	0.015 25.0 0.002 0.30 Report Only 205	+18 0.002 11.2 0.000 0.02 183 204	"test_method":"D 86", "maximum_value":"", "value":212, "volume_evaporated_unit":"%", "time_stamp":"15/03/13 13:01" "unit":"C",
41L-STD-3004C(1) ASTM D 6045 - 12 ASTM D 3242 - 11 ASTM D 1319 - 14 ASTM D 3227 - 13 ASTM D 4294 - 10	Color, Saybolt Total Acid Number Aromatics (% vol) Mercaptan Sulfur (% Total Sulfur (% mas Distillation Initial Boiling 10% Recovered (' 20% Recovered ('	* mas: ss) Point °C) °C)	5)	0.015 25.0 0.002 0.30 Report Only	+18 0.002 11.2 0.000 0.02 183	"test_method":"D 86", "maximum_value":"", "value":212, "volume_evaporated_unit":"%", "time_stamp":"15/03/13 13:01" "unit":"C", "minimum_value":"Report Only"
MIL-STD-3004C(1) ASTM D 6045 - 12 ASTM D 3242 - 11 ASTM D 1319 - 14 ASTM D 3227 - 13 ASTM D 3224 - 10	Color, Saybolt Total Acid Number Aromatics (% vol) Mercaptan Sulfur (% Total Sulfur (% mas Distillation Initial Boiling 10% Recovered (20% Recovered ()	* mas: ss) Point °C) °C) °C)	5)	0.015 25.0 0.002 0.30 Report Only 205 Report Only Report Only	+18 0.002 11.2 0.000 0.02 183 204 212 230	"test_method":"D 86", "maximum_value":"", "value":212, "volume_evaporated_unit":"%", "time_stamp":"15/03/13 13:01" "unit":"C", "minimum_value":"Report Only"
MIL-STD-3004C(1) ASTM D 6045 - 12 ASTM D 3242 - 11 ASTM D 1319 - 14 ASTM D 3227 - 13 ASTM D 4294 - 10 ASTM D 86 - 12	Color, Saybolt Total Acid Number Aromatics (% vol) Mercaptan Sulfur (% Total Sulfur (% mas Distillation Initial Boiling 10% Recovered (' 20% Recovered ('	* mas: ss) Point °C) °C) °C)	5)	0.015 25.0 0.002 0.30 Report Only 205 Report Only	+18 0.002 11.2 0.000 0.02 183 204 212	"test_method":"D 86", "maximum_value":"", "value":212, "volume_evaporated_unit":"%", "time_stamp":"15/03/13 13:01" "unit":"C", "minimum_value":"Report Only"

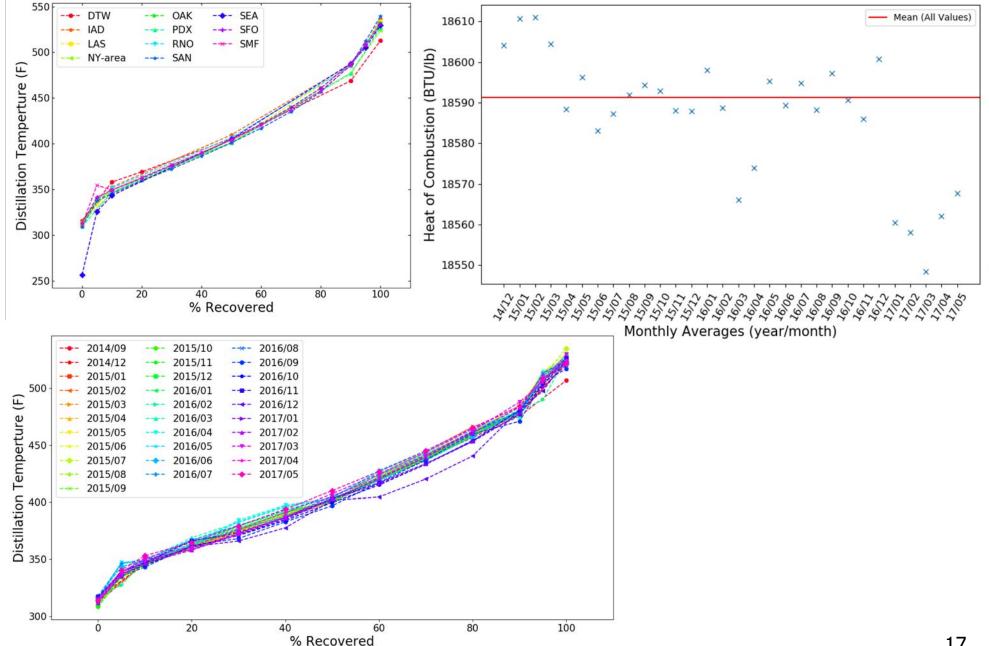
25,000+ fuel records converted to flexible JSON schema

Unify disparate data formats

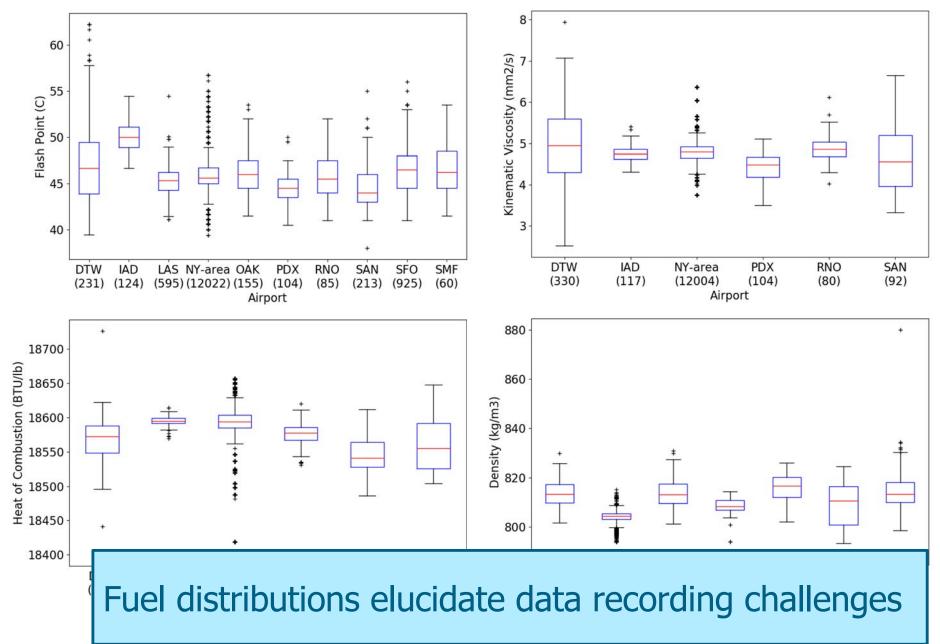


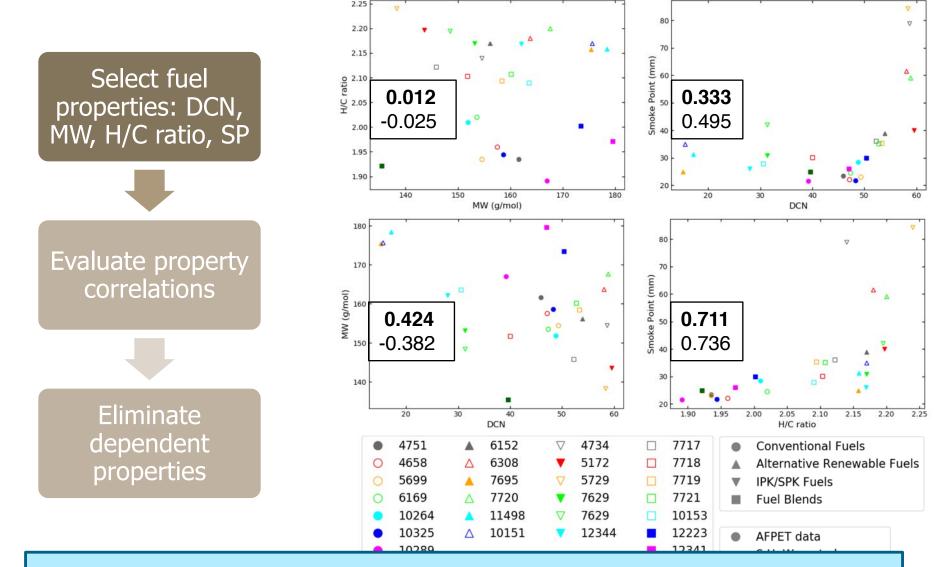
Site enables enhanced fuel comparison capabilities


Enable fuel property evaluations


Property Fuel Type Variance		Surface Tension	Equation
Density	SKA	WFS	y=-0.0751x +27.4
Isentropic Bulk Modulus	HEFA, FT	FT & HEFA	y=-0.0741x +25.9
Specific Heat	FT, FSJF	SPK	y=-0.0800x +25.9
Speed of Sound	HEFA	Renewables	y=-0.0771x +26.7
Viscosity	SKA, HEFA	CRC	y=-0.0443x +16.0

- Analyzed AJF variance from D4054 FFP * report
 - Found significant slope variance in all property categories except surface tension
- Generated thermophysical relations and specification property value ranges *
- *
 - Extended CRC WFS report with AJFTD data Compared conventional fuels against AJFs for various specification requirements


Domestic airport data highlight reporting inconsistencies

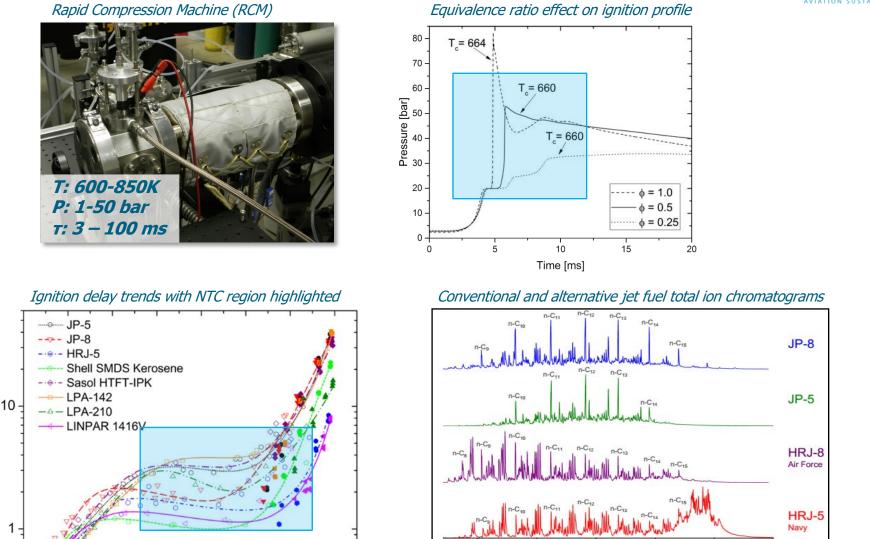

Airport COA data demonstrate need for testing standardization

Composition-property evaluations elucidate property dependency

H/C:SP dependency indicates specification redundancy

Multiple Linear Regression employs reduced independent property set

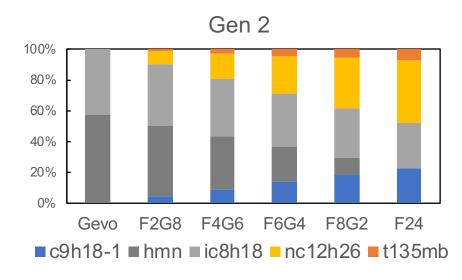
 $y_{MLR} = \beta_0 + \beta_1 CP_{DCN} + \beta_2 CP_{H/C} + \beta_3 CP_{MW}$


Combustion Properties				Selected Fuel Properties					
DCN	H/C Rat	io	MW [g/mol]	Flash Po	int [°C]	Freezing Point [°C	Net Heat of [] Combustion [MJ/kg]		
		Train	ing Set – fuels a	across conv	entional, AJF	, and blends			
		0	Q	0	0				
Fuel Property		β _o	βı	β ₂	β ₃				
Flash Point		34.12	0.1497	-25.92	0.3902				
Freezing Point		16.80	0.4877	-49.17	0.0346				
Net Heat of Com	nbustion	35.34	0.003780	3.635	0.003568				
Kinematic Viscos	sity	-10.14	0.004741	-0.5214	0.0942	-			
					MLR %	6 Error			
Testing Set Fuel Type			Flash Point [°C]	Freezing	Point [°C]	Net Heat of Combustion [MJ/kg]		
Conventional			4.65		8.	82	0.00		
SPK			2.65		7.	73	0.51		
Conventional			6.41		3.	08	0.79		
Conventional			5.99		8.	26	0.63		
Blend			4.74		5.	04	0.07		
Renewable			1.84		5.	28	0.84		

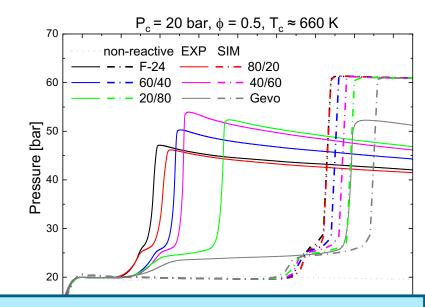
Advances prior studies on limited conventional datasets

Testing focuses on unique autoignition reactivity

Ignition Delay (τ) [ms]



Reaction routes diverge at edges of operational envelope


F-24 & Gevo testing address fuel blending performance impact

Surrogate species descriptions

Class	Species	Formula	Full name	Figure ID
n alkana	nC11H24	C11H24	n-undecane	а
n-alkane	nC12h26	C12H26	n-dodecane	b
	iC8H18	C8H18	iso-octane	с
iso-alkane	iC12h26	C12H26	iso-dodecane	d
	hmn	C16H34	iso-cetane	е
	C9h18-1	C9H18	propyl-cyclohexane	f
cycloalkane	C10H20-1	C10H20	butyl-cyclohexane	g
	mC11h22	C11H22	pentyl-cyclohexane	h
aramatia	TMB124	C9H12	1,2,4-trimethylbenzene	i
aromatic	t135mb	C9H12	1,3,5-trimethylbenzene	j

Results indicate F-24 fuel characteristics control LTC and improve AJF blend reactivity

Surrogate species chemical structure

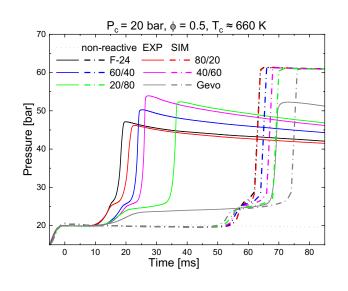
This work delivers the following key contributions

First dynamic jet fuel data resource Disseminate critical fuel property data

AJ	FTD	ALTERN TEST D	IATIVE JE ATABASE	T FUELS	5
HOME	ABOUT -	DATABASE	NJFCP -	NEWS	CONTACT
	0	1			10.0
0	l de	0		Q	and the second
~	12.		to		
	- and	-11-		No. R	

Selected Fuels	×
10299	×
10373	×
12381	×
8041	×
8319	×
9324	×

Compare selected fuels


Novel AJF thermophysical & compositionproperty relations

Support fuel pre-screening & streamlining

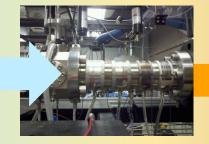
Fuel Property	Significant Variance
Density	SKA
Isentropic Bulk Modulus	HEFA, FT
Specific Heat	FT, FSJF
Speed of Sound	HEFA
Viscosity	SKA, HEFA

Unique autoignition testing & kinetic modeling

Analyze fuel performance at low T, lean conditions

AJFTD is first national platform to store and disseminate jet fuel research

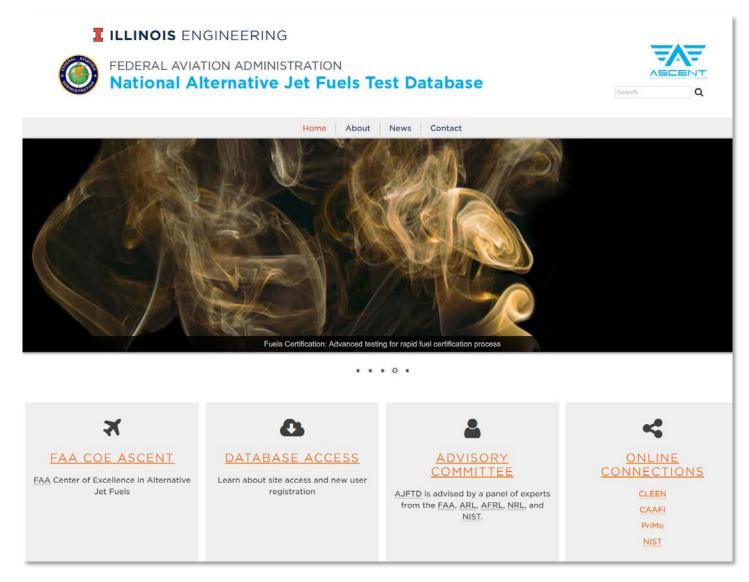
altjetfuels.illinois.edu



Feedstock production & logistics

Conversion, scale-up & processing

Fuel property testing & approval



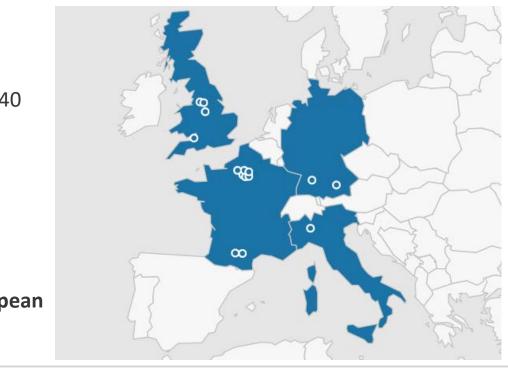
End use production & emission testing

Critical for collaboration in fuel research community

Gen II database – under development

- Same log-in authorization
- Data submission available for users
- Improved search result accessibility
- Non Relational Data Analysis Interface

Gen II upgrades directly interface with database



arch by Fuel	ID Go		Search by Airport		Search by ATJ	/ Fuel T	Go	
					7110			
uel Name	Fuel Description					Ð	Selected Fuels	
)299	Sampled 5-23-13 the USAF Aernat	from Tank F-3 ATJ Prior to Delive ive Fuel Certification Program.	ery Bio-derived Gevo ATJ from AFF As of 29 May 2013, Tank F-3 contai	RL/RQTF Tank F-3. This testing is in support o ns 10,797 gal bio-derived ATJ. Sampl	f 🥹	÷	10299	
0373	Off-loaded into t	ank S-16			0	÷	10373	
		fleels waint		902 Battelle Blvd. MSIN P8-60 Richland	d, 🗿		12381	
		flash_point			82. 		8041	
		Tests with plottable data: 6					8319	
				Composition			9324	
58				acidity_total			Compare selected fuels	
56	0			additives_fsii aromatics_total			Compare selected rules	
54] contaminants_existent_gum				
0000				contaminants_total_particulate_conta contaminants_water_coulometric_kar				
52	0	0		contaminants_water_reaction_interfac		tion		
U 50		0 0		hydrogen_content msep				
48				l olefins_total				
				l sulfur l sulfur_mercaptan				
46								
44			0					
42								
Jan 2012	Jul 2012 Jan 20	013 Jan 2014 Jul 2 time_stamp	014 Jan 2015 Jul 2015 Jan 2	016				
		Show Plot						

AJFTD moved beyond file repository to interactive data tool

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723525

Contact persons:

Coordinator:

DLR

Patrick Le Clercq and Bastian Rauch Pfaffenwaldring 38-40 D-70569 Stuttgart GERMANY

Email:

Address:

maroto@arttic.eu

A project gathering **15 partners** from **4 European** countries:

Joint database vision - FAA & JETSCREEN

One integrated database with associated proprietary dataset (when necessary) containing:

- Detailed datasets from fuels world wide using common schema
- Data range: conventional and alternative fuels, neat and blends

Task: Development of common database interface

- Different access levels depending on user group (Security)
- Common interface to data but using different database backends (Mongo DB, DynamoDB) for the two databases
- Task: Development & application of analysis tools with relevant stakeholders
 - Different analysis tools based on programming platform and user needs
 - Employ specification property focused, performance centered, and/or enduse/ emissions targeted tools
 - Similar analysis strategy for both programs regarding key metrics

Joint database provides access to expanded fuel dataset

Span wide set of properties (Tier 1 – Tier 4, fuel impact)

Enable progress in different areas:

Safety & Reliability

Coordinate fuel data with

Global Aviation Data Management

- Track flight/ system issues with fuel information
- Investigate any fuel-related component failures

Connect AJF & flight data

(maintenance records)

- Show safety & compatibility of AJFs with existing systems
- Increase market support for continued integration

Expand fuel & flight records

 Increase safety for all participants

Operations Track fuel properties in use:

processing, supply chain, end use

Improve quality control in fuel production & supply

Make blend data accessible to airports & airlines

- Demonstrate safe usage of
 AJFs with detailed supply info
- Build trust between producers, suppliers, & consumers

Expand fuel operational data

compilation & dissemination

 Increase system optimization across industry

Engineering/Science

Statistical analysis for aircraftrelated properties

 Facilitate design of components impacted by fuel

Model development & validation

- Streamline approval, reduce early stage testing
- Enhance development & production of AJFs

Acknowledgements

Support

Federal Aviation Administration (FAA): Office of Environment and Energy ASCENT Project 033 (Program Manager: Cecilia Shaw) Award Number: 13-C-AFJE-UI-015

Collaborators

- Dr. Steve Zabarnick (University of Dayton Research Institute)
- Dr. Tim Edwards (Air Force Research Laboratory)
- Engineering IT & AWS @ Illinois (University of Illinois)

