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Motivation

• Rotorcraft noise increasingly becoming a larger issue with 
general public
– HAI’s “Fly Neighborly Guide” is helpful for community noise

• Since publication, new rotorcraft and operations have been developed
– Need for more detailed data and information about noise 

produced from the operation of rotorcraft
– Need for detailed and specific noise abatement procedures

• This project investigates noise abatement flight 
procedures of rotorcraft through modeling
– Physics based modeling of noise leveraging previous research 

performed for NASA and DoD
– Comprehensive modeling of the many sources of rotor noise
– Complete vehicle modeling during example flight procedures 

• Flyover
• Approach, departure
• Turn maneuvers, etc.
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Objectives

• Utilize computational and analytical modeling to 
develop noise abatement procedures for various 
helicopters and various phases of flight. 
– Flight test data will be used to determine the 

effectiveness of the procedures

• Support the upcoming flight test

• Determine if it is feasible to develop noise 
abatement procedures for categories of 
helicopters. 
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Schedule and Status
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-19

Assess effectiveness of flight test
noise abatement procedures

Evaluate and refine noise abatement
procedure development strategy

Demonstrate potential of refined
abatement procedures

Support upcoming flight test
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Outcomes and Practical Applications
• Outcomes

– Assess noise abatements procedure flown in the 
FAA/NASA flight test in August/October 2017.
• 6 different aircraft
• Different technology levels, manufacturers, etc.

– Evaluation of noise abatement procedure strategy
• Determine weaknesses in noise prediction system
• Validate the noise abatement procedures and the 

predictions
• Develop strategies for more effective noise 

abatement procedure development by 
understanding the real flight effects

– Assessment of effectiveness of noise abatement 
procedures used in the flight tests



6

Outcomes and Practical Applications
• Practical applications

– Demonstrate the value and ability of physics based 
tools for the development of flight procedures
• For rotorcraft manufacturers
• For Government (FAA)

– Evaluate noise abatement procedures based on the 
operating parameters rather than design parameters
• Noise abatement procedures will be used for different 

helicopters 
• Goal is that procedures will have wide range of application
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Approach

• Validate noise prediction system for noise abatement 
procedures/maneuvers
– Model helicopters for noise prediction
– Compare predicted noise with flight test data
– Investigate refinements relevant to noise abatement

• Model noise abatement procedures to demonstrate advantages
– Detailed analysis of abatement procedures
– Investigate the role of various noise sources

• Evaluate whether unique noise abatement procedures should be 
developed for each helicopter category
– Determine effectiveness of abatement procedures for different 

helicopters
– Consider if a category is really representative of individual helicopters in 

the category

• Analyze noise abatement procedures in support of the flight test
– Assist the flight test by providing evaluating noise abatement procedures 

and different maneuvers
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Status and Accomplishments
• Administration

– Nothing at this time

• Technical Status
– A comprehensive noise prediction system is developed for 

generating noise abatement procedures
• Includes time dependent flight path and attitude information
• Includes quasi-periodic blade loads
• Includes time dependent broadband noise prediction
• Paper describing updates to noise prediction system will be presented at 

AIAA/CEAS 2019 Aeroacoustics Conference
– Validation of the noise prediction system is ongoing

• Various flight conditions are compared with flight test data and will  be 
presented during the VFS 2019 Forum

– Analysis of the noise components provides unique outlook for 
developing noise abatement procedures
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Noise Abatement Example (Bell 430)
Segment (a)
• Constant  speed (100 kts) descent and 

increasing flight path angle
Procedure 1

Segment (b): Decelerating at constant 
flight path angle (-10 deg)
Segment (c): Decreasing descent rate 
at constant speed

Procedure 2 
Segment (b): Decelerating at constant 
descent rate (1400 fpm)
Segment (c): Decreasing the flight path 
angle and descent rate

Segment (d)
• Decreasing the flight speed at lower 

descent rate before landing

Notice that segments (a) – (d) are not the 
same for the two procedures

Noise abatement procedure 2

Noise abatement procedure 1
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Noise Abatement Example (Bell 430)

• Both procedures make less 
noise than baseline

• Procedure 2 is significantly 
better than procedure 1

• These example procedures 
did not considered “flyability”
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Comprehensive noise prediction 
system development
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Updates to Noise Prediction System

• Fully implemented time dependent information
– Aircraft position: (x,y,z)
– Aircraft attitude: (pitch, yaw and roll)
– Blade loads 

• Quasi-periodic assumption used
– One rotor revolution of data – from each rotor – is used for a 0.5 sec 

time window
– After 0.5 sec, a new periodic loading from each rotor is used

– Flapping dynamics for thickness noise calculation
– Rotor thrust for broadband noise calculation using Pegg’s

empirical model

• Added wall reflection model for broadband noise
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Flight Path Modeling for 
Validation

Subtle example showing 
importance of representing 
all aircraft motion
• A/C flight motion 

modeled with current 
controller

• A/C – position, velocity, 
and heading modeled

• These figures show a 
comparison of:

– Flight test
– desired (steady flight 

path)
– Simulated flight trajectory

y

altitude

True 
airspeed

roll

pitch

heading

Robinson R44, 80 kts level flight
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Flight Path Modeling for 
Validation

Steady flight path

Flight test data

Simulated flight path

Robinson R44, 
80 kts level flight
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Validation with flight test data
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Helicopters Flown in 2017 FAA/NASA 
Flight Test and in Simulation 

• R44

• R66

• AS350

• EC130

• Bell 407

• Bell 206L

Selected due to 
different engine 
power and size

Selected due to 
different tail rotor 
technology
(Fenestron on EC130)

Selected due to 
different number 
of MR blades
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• Comparison between the flight test data and prediction – R44, R66, 
B206, B407, AS350

• Validation of noise prediction system with flight test data
– Flight Test Data Processing:

• Measured acoustic pressure processed by PSU-WOPWOP to 
compute the SEL levels on the ground plane

• Microphones that did not capture the pressure signal are excluded in 
prediction too

– Noise Prediction: 
• Flight tracking data used to direct flight simulation controller
• Simulation controller approximates the actual flight path
• Discovered blade motions for thickness noise are not updated –

periodic motions from first 0.5 sec used throughout maneuver

Comparison between prediction and 
flight test data
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80 kts, 6 deg descent
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80 kts level flight

• Agreement quite good for 
all cases

• Slightly more overprediction 
for Bell 206L (broadband 
noise dominant)

• Airbus EC130 not included 
because Fenestron duct not 
modeled in predictions
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80 kts, level turn

80 kts, level turn with 25 deg roll angle
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80 kts, decelerating, level turn

80 kts, level, decelerating turn, final roll angle 35 deg, decelerating from 80 to 60 kts
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80 kts, descending turn

80 kts, descending turn, 6 deg decent angle, final roll angle 35 deg
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R66 – Noise Components, 
Descending Turn

Left turn Right turn

thickness

loading

broadband

Current flight controller lets the aircraft drift to the side; this should be fixed in 
future version 
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AS350 – Noise Components, 
Descending Turn

Left turn Right turn

thickness

loading

broadband

Compare AS350 left turn with Bell 407 right turn 
(CW vs CCW main rotor rotation)
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Bell 407 – Noise Components, 
Descending Turn

Left turn Right turn

thickness

loading

broadband

Left turn: strong BVI noise occurs at the beginning of the turn
Right turn: strong BVI noise occurs at the end of the turn
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Recent Accomplishments and 
Contributions

• Comparison between 6 maneuvering cases is completed
– Transient flight test results in additional complication in analyzing any maneuver case
– Most of the cases shows higher loading noise at the region of turn, with highest level seen 

if the aircraft turns on advancing side
– Thickness noise computation needs to be modifies to account for changes in blade flapping

• Overall the noise trends are well captured with the level difference of 2-4 
SELdB

• Examination of noise components helps explain what is happening in 
complex maneuvers

Summary
• Summary statement

– Physics-based noise prediction system has been formed from 
previously existing tools

– Noise prediction system agrees quite well with flight flight test data for 
multiple aircraft, even for complex manuevers

• Next steps?
– Focus on abatement procedure development and comparison between 

flight test data prediction system
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