FAA CENTER OF EXCELLENCE FOR ALTERNATIVE JET FUELS & ENVIRONMENT

Takeoff/Climb Analysis to Support AEDT APM Development

Project 45

Georgia Tech Faculty

Prof. Dimitri Mavris (PI), Dongwook Lim (Co-PI) Dr. Yongchang Li, Dr. Michelle R. Kirby

Graduate Students Ameya Behere, Zhenyu Gao, Yee Chan (Daniel) Jin

FAA-AEE Bill He (PM), Joseph DiPardo, Dr. Mohammed Majeed

> April 18th & 19th, 2019 Atlanta, GA

Opinions, findings, conclusions and recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of ASCENT sponsor organizations.

Introduction

- Accurate modeling of aircraft performance is a key factor in estimating aircraft noise, emissions and fuel burn
- Various assumptions are made for aircraft performance modeling (APM) within the AEDT with respect to:
 - Takeoff weight
 - Takeoff thrust
 - Departure flight profiles
- The main objectives of this research are to
 - 1. Identify prior relevant research methods and benchmark the current APM assumptions
 - 2. Conduct statistical analysis of real-world performance data
 - 3. Develop a state estimator
 - 4. Document recommendations for APM enhancements

Practical Outcomes

- Short term
 - Assessment of current modeling assumptions within the APM
 - Identification of modeling gaps to real world flight
 - Identification of necessary flight data to represent real world flight
 - Statistical analysis of real flight data
 - Sensitivity investigation of modeling assumptions, including fuel burn, NOx, and noise
- Long term
 - Recommendations for new algorithm to represent real world takeoff performance
 - Documentation of sensitivity analysis and implications of modifications to the procedures for the APM

Summary of the Findings and Recommendations

AEDT vs Reality

• AEDT uses Stage Length

Assumptions (What's the gap?)

(SL) bins

APM

Weight

ASCENT **Potential Data** Source (by how much?) • IATA (GW) • BTS (Payload)

	 AEDT tends to underestimate GW by ~%5 for low SLs AEDT may overestimate GW for high SLs 	in noise contour areas • NOx and FB (-5 to +10%)	AND/OR • Reduce the bin size OR • Use a continuous function(s)	• CAEP (LF) • SAPOE • AWABS • Users
Thrust	 AEDT uses 100% thrust Airlines use reduced takeoff thrust when possible (~95% of the time) Typically limited at 25% reduction About 15% reduction on average, but can be as much as 40% 	 High (~15%) difference in noise contour areas NOx (-3%) FB (+4%) 	 Change the thrust coefficients for takeoff and climb in the THRUST_JET table and BADA4 algorithm Schedule thrust reduction % based on GW, temperature, and elevation 	 IATA Commercial runway analysis programs by FLYAPG.com Project 35 → ACARS Volpe → FDR Physics based calculations TTREAT Users
Departure Procedures	 Most aircraft in AEDT have STANDARD, ICAO- A, and B Procedures Airlines use NADP1 and 2 Procedures 	 Medium (1~10%) difference in noise contour areas NOx and FB (+5 to +19%) 	 Rename the ICAO-A and B procedures to NADP1 and 2 Add NADP profiles that are not in AEDT Develop a flap schedule table using existing AEDT profiles Convert ROC to Energy Share percent Interpolate the VSTOP for different GW 	 ICAO PANS-OPS ICAO 2007 NADP Survey ACRP 02-55 Airline Interviews Airport Interviews PDARS and FDR AIP and OP-SPEC Users

Importance

• Medium (-5 to

+10%) difference

(Does it

matter?)

Changes to AEDT

• Update the GW assumption for

(how?)

each bin

Reduced Thrust and Alternative Weight Profiles

- Developed new profiles for 90 commercial and business jet aircraft
- Each aircraft have 7 additional sets of profiles populated in the FLEET DB
- The new alternative weight of a stage length is the average of current stage length (SL) weight and the weight of the immediate next SL
- The reduced takeoff thrust is implemented via a multiplication of the full thrust coefficients by the reduction percentage

PROF_ID1	Weight	Takeoff Thrust Level	Climb Thrust Level		
STANDARD	Standard Weight	0% Reduction	0% Reduction		
MODIFIED_RT05	Standard Weight	5% Reduction	0% Reduction		
MODIFIED_RT10	Standard Weight	10% Reduction	10% Reduction		
MODIFIED_RT15	Standard Weight	15% Reduction	10% Reduction		
MODIFIED_AW	Alternative Weight	0% Reduction	0% Reduction		
MODIFIED_AW_RT05	Alternative Weight	5% Reduction	0% Reduction		
MODIFIED_AW_RT10	Alternative Weight	10% Reduction	10% Reduction		
MODIFIED_AW_RT15	Alternative Weight	15% Reduction	10% Reduction		

<u>Note:</u> FAA AEE approval is required in order to use the modified profiles for regulatory applications. Users must submit a justification for the profile they select.

Comparison of the STANDARD vs New Profiles - Noise

Tested the all 7 new profiles for 90 aircraft at a sea level airport (7124 departures)

Takeoff and climb thrust reduction led to decrease in SEL 80 dB contour area and width, but increase in length.

Comparison of the STANDARD vs New Profiles - Emissions (<10k)

Tested the all 7 new profiles for 90 aircraft at a sea level airport (7124 departures)

- Takeoff and climb thrust reduction led to increase in Fuel Burn, CO2, CO, etc. and decrease in NOx emissions below 10,000 ft
- Weight increase lead to increase in all emission species below 10,000 ft

Noise Abatement Departure Procedures (NADPs)

ICAO and FAA recommend that all carriers adopt no more than two procedures for each aircraft type; one for noise abatement of communities close to the airport and one for noise abatement of communities far from the airport

Development of NADPs for AEDT

Research Questions	Objectives	Tasks	Status
1. What are the NADPs used by airlines?	Understand the reality	Literature reviewInterviewNADP library	Completed
2. What departure profiles do we already have in AEDT?	Identify the gaps	 Map AEDT profiles to the NADP library 	Completed
3. What do we want to model in AEDT?	Determine the scope of applicability	Aircraft typesQuantify the impacts	In-Progress
4. How do we add new profiles to AEDT?	Develop NADP modeling methods	 Review current AEDT profiles Develop new NADPs in AEDT Test the new profiles Sensitivity Study 	In-Progress
5. How do we inform the users to choose appropriate profiles?	Develop NADP selection guidance	 Review AIP Review PDARS data FOQA data analysis 	Future work

11

NADP Data Collection

REVIEW OF NOISE ABA TEMENT PROCEDURE RESEARCH & DEVELOPMENT AND

IMPLEMENTATION RESULTS DISCUSSION OF SURVEY RESULTS

Approved by the Secretary General and published under his authority

PRELIMINARY EDITION - 2007

International Civil Aviation Organization

- Literature Review
 - 1) ICAO 2007 NADP Survey
 - 2) AEDT Technical Manual
 - 3) CAEP/7-WP/25
 - 4) ICAO, DOC 8168 Vol1. PANS-OPS, 2006
 - 5) FAA Advisory Circular 91-53A
 - 6) NBAA Noise Abatement Departure Procedure rev2015
 - 7) OP-SPEC
 - 8) Aeronautical Information Publication (AIP)
- External Communications
 - 1) Mr. Jim Brooks
 - 2) Delta Airlines Pilots, Engineers, etc.
 - 3) SFO Airport Aircraft Noise Abatement Office
 - 4) Spirit Airline Pilot
 - 5) HMMH

NADP Library and AEDT Profiles

DEPARTURE PROCEDURE LIBRARY				Number of Aircraft with this profile in AEDT									
Profile ID	NADP Type	Profile Name	СИТВАСК	INITIAL ACCEL.	FINAL ACCEL.	Source	Total	Boeing	Airbus	Embraer	Bombard ier	MD	DC
1	1	NADP1-1	800	1500	3000	[1]	0	0	0	0	0	0	0
2	1	NADP1-2	800	2500	CONT	[1]	0	0	0	0	0	0	0
3	1	NADP1-3	800	3000	CONT	[3],[4]	0	0	0	0	0	0	0
4	1	NADP1-4	1000	2500	CONT	[1]	0	0	0	0	0	0	0
5	1	NADP1-5	1000	2500	CONT	[1]	0	0	0	0	0	0	0
6	1	NADP1-6	1000	3000	CONT	[1]	1	1	0	0	0	0	0
7	1	NADP1-7	1500	3000	CONT	[1],[2],[3]	<mark>4</mark> 1	17	15	4	2	3	0
8	2	NADP2-1	1500	1000	1500	[1]	0	0	0	0	0	0	0
9	2	NADP2-2	AFTER	800	3000	[1],[3],[4]	0	0	0	0	0	0	0
10	2	NADP2-3	AFTER	1000	3000	[1],[2],[5]	80	29	31	4	2	7	7
11	2	NADP2-4	AFTER	1000	2500	[1]	0	0	0	0	0	0	0
12	2	NADP2-5	AFTER	1000	CONT	AEDT	3	3	0	0	0	0	0
13	2	NADP2-6	AFTER	1500	CONT	AEDT	1	1	0	0	0	0	0
14	2	NADP2-7	BEFORE	800	3000	[1],[3],[4]	0	0	0	0	0	0	0
15	2	NADP2-8	BEFORE	800	CONT	[1]	0	0	0	0	0	0	0
16	2	NADP2-9	BEFORE	1000	2500	[1]	0	0	0	0	0	0	0
17	2	NADP2-10	BEFORE	1000	CONT	[1]	1	1	0	0	0	0	0
18	2	NADP2-11	BEFORE	1000	3000	[2]	24	13	0	6	2	3	0
19	2	NADP2-12	BEFORE	1500	CONT	[1]	0	0	0	0	0	0	0
20	2	NADP2-13	BEFORE	1500	3000	AEDT	1	1	0	0	0	0	0

All STANDARD, ICAO-A, and ICAO-B departure profiles in AEDT can be classified as NADP1 or NADP2
Most airlines fly NADP2's with thrust cutback before flap retractions, which are sparse in AEDT

How do we develop NADPs for AEDT?

NADP1-7 vs NADP2-10

- One of the most widely adopted NADP1s and NADP2s are compared at an airport
- The two NADP profiles show different noise and emission impacts due to different thrust cutback/acceleration altitudes

Interfaces and Communications

- External
 - Weekly telecons with the AEDT development team
 - Society of Automotive Engineers (SAE), A-21 Aircraft Noise Measurement and Aircraft Noise/Emission Modeling Committee
 - Airlines and Airports
 - Welcome other advisors from industry
- Within ASCENT
 - Bi-weekly telecons with the FAA/AEE
 - P35 (Airline Data Analysis for Takeoff Thrust and Weight), P36 (AEDT UQ), and P43 (NPD+C)
- Publications
 - NOISE-CON 2019
 - Ameya Behere, Dongwook Lim, Michelle Kirby, Dimitri Mavris, "Alternate Departure Procedures for Takeoff Noise Mitigation at Atlanta Hartsfield-Jackson International Airport", AIAA SciTech Conference, January 7-11, 2019, San Diego, CA.
 - Dongwook Lim, Michelle Kirby, Matthew Levine, and Dimitri Mavris, "Improved Aircraft Departure Modeling for Environmental Impact Assessment", AIAA Aviation and Aeronautics Forum and Exposition, June 25-29, 2018, Atlanta, GA.
 - Junghyun Kim, Dongwook Lim, Dylan Jonathan Monteiro, Michelle Kirby, and Dimitri Mavris, "Multi-Objective Optimization of Departure Procedures at Gimpo International Airport", International Journal of Aeronautical & Space Sciences, 11 April 2018, <u>https://doi.org/10.1007/s42405-018-0027-1</u>
 - ASCENT Annual Reports

Summary

- Summary statement
 - Combination of better weight estimates, reduced thrust, and modeling of current Noise Abatement Departure Procedures (NADPs) will yield more realistic noise and emissions results
 - Developed and implemented new profiles with alternative weight and reduced thrust
 - Current procedures in AEDT do not match real world conditions for departure procedures
 - Results of this research will provide better understanding of the combined impacts of these factors
- Next steps
 - Add new flight procedures (NADPs) to better represent flights flown today
 - Understand the trade-offs between noise, fuel burn, and emission for different NADP profiles
- Key challenges/barriers
 - Access to real flight data and other validation data