FAA CENTER OF EXCELLENCE FOR ALTERNATIVE JET FUELS & ENVIRONMENT

### Resilience Assessment Framework for Sustainable Aviation Fuel Supply Chain Project 001

Lead investigator: Michael P Wolcott, Washington State University Co Investigators: Ji Yun Lee, Jie Zhao, Dane Camenzind, Kristin Brandt, Washington State University Project manager: Nathan Brown, FAA

> October 22 & 23, 2019 Alexandria, VA

This research was funded by the U.S. Federal Aviation Administration Office of Environment and Energy through ASCENT, the FAA Center of Excellence for Alternative Jet Fuels and the Environment, project 001 through FAA Award Number 13-C-AJFE-WaSU-016 under the supervision of Nathan Brown. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA.







### **Uncertain events and conditions**







### **Definition of Resilience**

Broad definition: the ability to prepare for and adapt to changing conditions and withstand and recover rapidly from disruptions

Supply chain resilience (Hosseini et al., 2019)

- Absorptive capacity of supply chain to absorb and resist the impact of perturbations
- Restorative capacity of supply chain to recover quickly and efficiently
- Adaptive capacity of supply chain to respond to uncertain conditions



Figure adapted from Lounis, Z., & McAllister, T. P. (2016). Risk-based decision making for sustainable and resilient infrastructure systems. *Journal of Structural Engineering*, *142*(9), F4016005. Hosseini et al., 2019, Review of quantitative methods for supply chain resilience analysis, Transportation research Part E 125: 285-307.





### Goal

• Develop a resilience assessment framework for SAF supply chain

### **Objectives**

- Quantify the effect of multiple uncertain events/conditions on the performance of a supply chain
  - mitigate the negative impacts while capitalizing on opportunities
- Develop a new resilience index
  - that considers the long-term performance of a supply chain
  - that considers the quantitative effects of multiple uncertain events/conditions
  - that quantifies all dimensions of resilience

# The Scope of the Work



Theoretical framework development

What has been done





## **Step 1. Risk Identification**



#### Uncertain events and conditions classified into eight categories

| Category                      | <b>Events/Conditions</b>              | Threat/Opportunity    |
|-------------------------------|---------------------------------------|-----------------------|
| Natural hazards               | Earthquake                            | Threat                |
| Natural hazards               | Hurricane                             | Threat                |
| Climate change                | Dry climate                           | Threat                |
| Climate change                | Increasing intensity and frequency    | Threat                |
| Man-made hazards              | Intelligent attacks                   | Threat                |
| Market                        | Competition among fuels Threat        |                       |
| Market                        | Customer preferences                  | Threat or Opportunity |
| Supply                        | Feedstock amount                      | Threat or Opportunity |
| Technology                    | Conversion rate Opportunity           |                       |
| Finance                       | Backruptcy in one of the nodes Threat |                       |
| Human/Organizational behavior | Human errors Threat                   |                       |
| Human/Organizational behavior | Strike in one of the nodes Threat     |                       |

## **Step 2. Risk Assessment**



#### **Computational scenario-based performance assessment**



## **Step 2. Risk Assessment**



#### Supply chain performance measure: Unmet Demand Ratio (UDR)

• Unmet demand ratio in demand node d at time t during scenario n

: 
$$U_{d,n}(t) = \frac{DM_{d,n}(t) - \sum_{r=1}^{R} x_{r,d,n}(t) \cdot FS_{r,d,n}(t)}{DM_{d,n}(t)}$$

• Unmet demand ratio of the supply chain at time t during scenario n

$$: UDR_n(t) = \frac{\sum_{d=1}^{D} U_{d,n}(t)}{D}$$

where

 $DM_{d,n}$ : demand in demand node d during scenario n

R: a set of refinery nodes

 $x_{r,d,n}$ : flow of SAF on arc (r,d) during scenario n

 $FS_{r,d,n}$ : normalized capacity of arc (r,d) during scenario n

D: number of demand nodes

### **Step 3. Resilience Index Calculation**

#### Three dimensions of resilience index

Non-hazard-event resilience: robustness

 $: R_{1,n} = \int_{t_c} UDR_n(t_c)dt_c$ 

where  $t_c$  = the periods during which +UDR is induced by cumulative negative impact caused by non-hazard events/conditions

Hazard-event resilience: rapidity and resourcefulness

$$: R_{2,n} = \int_{t_{h,i}} UDR_n(t_{h,i}) dt_{h,i}$$

where  $t_{h,i}$  = the periods during which +UDR is induced by the i<sup>th</sup> hazard

i = the number of hazard events over T during scenario n

Redundancy

$$: R_{3,n} = \int_{t_{p,j}} UDR_n(t_{p,j}) dt_{p,j}$$

where  $t_{p,i}$  = the periods during which -UDR is induced by the j<sup>th</sup> event

j = the number of positive events over T during scenario n





# **Step 3. Resilience Index Calculation**



#### **Resilience index**

: combines three dimensions of resilience

$$R = -w_1 R_1 - w_2 R_2 + w_3 R_3$$
  
where  $R_1 = E_n[R_{1,n}], R_2 = E_n[\sum_i R_{2,n}], and R_3 = E_n[\sum_j R_{3,n}]$ 





#### Oilseed-to-alternative-jet-fuel supply chain







#### **Risk identification**

| Category               | Risk               | Threat/Opportunity | Assessment              |
|------------------------|--------------------|--------------------|-------------------------|
| Natural hazard         | Earthquake         | Threat             | SPHA                    |
| Climate change         | Dry climate        | Threat             | Scenario-based analysis |
| Technology development | Conversion rate    | Opportunity        | Retrospective analysis  |
| Man-made hazard        | Intelligent attack | Threat             | Expert opinion          |



#### Seismic hazard map: all the nodes except feedstock production nodes





#### Seismic hazard map: oilseed production nodes





#### Probabilistic seismic hazard analysis and damage state estimation





Dry climate scenarios induced by climate change

: long-term change in feedstock amount due to dry climate



Dry climate scenarios (IPCC 2013) Annual precipitation projection for each scenario Long-term change in feedstock amount for each scenario  $y = -0.0086x^2 + 17.394x - 2298.3$  $R^2 = 0.5121$ Winter Canola Yields (kg/ha) Growing Season Precipitation (millimeters) (This is for oilseed amount)





#### **Technology development**

#### : long-term change in conversion rate in HEFA







- Summary of accomplishments during the past year (October 2018 October 2019)
  - Develop a resilience assessment framework for SAF supply chain
    - Quantify the effect of multiple uncertain events/conditions on the performance of a supply chain → help identify appropriate risk mitigation measure
    - Develop a new resilience index → used in risk-informed decisionmaking for resilient supply chain

### Next steps

- Apply the framework to the oilseed-to-alternative-jet-fuel supply chain in Washington State
  - Assess the combined effects of earthquake, dry climate, intelligent attack and technology development on the long-term performance of the supply chain
  - Assess the expected resilience index of the supply chain



# **THANK YOU**