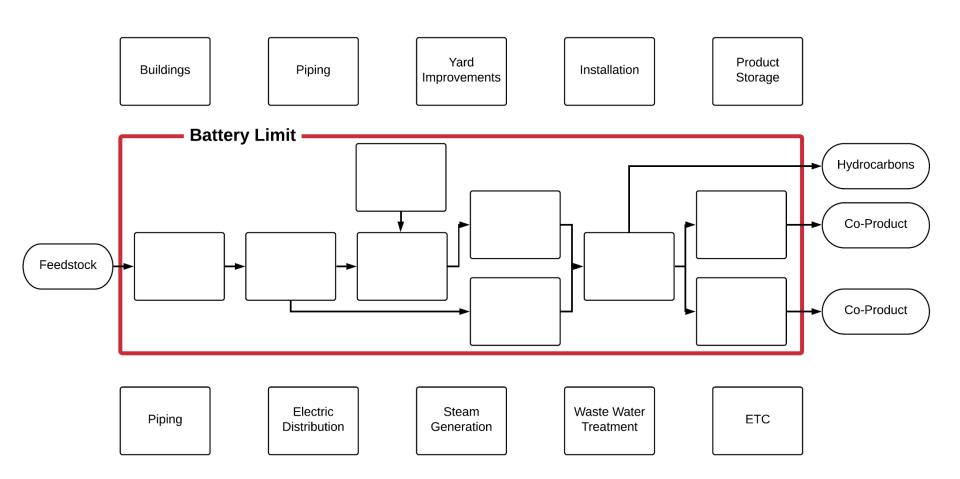
Financial Methodology and Impact for Facility Repurposing a Pulp Mill into an AJF Facility Project 001

Lead investigator: Michael P Wolcott, Washington State University Co Investigators: Kristin Brandt, Dane Camenzind, Scott Geleynse, Xiao Zhang, Washington State University

Project manager: Nathan Brown, FAA

October 22 & 23, 2019 Alexandria, VA

This research was funded by the U.S. Federal Aviation Administration Office of Environment and Energy through ASCENT, the FAA Center of Excellence for Alternative Jet Fuels and the Environment, project 001 through FAA Award Number 13C-AJFE-WaSU-16 under the supervision of Nathan Brown. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA.


Outline

- Repurpose existing facility by estimating capital costs with the ratio factor method
- Levels of repurposing
- Controlling Variables
 - Facility scale
 - Site Cost
 - Level of repurposing
 - Process variables
- Results
 - Standard cases
 - Case Study

Process Modeling

Required Information for a Techno-Economic Analysis

CAPEX	OPEX	Financial Assumptions
TDEC	Fixed	Discount rate
Direct costs	Variable	Equity
Indirect costs		Inflation
Site cost		Cost year

$$FCI = (DC_{rf} + IC_{rf}) \cdot (TDEC)$$

TDEC = total delivered equipment cost

FCI = *fixed capital investment*

Impact of Repurposing

Increase	Hold	Decrease
Site cost	Indirect ratio factor	TDEC
	OPEX	Direct ratio factor
	Working capital	
	Land	

Solid-Fluid Processing Plant				
Direct Costs	(% TDEC)			
Delivered Equipment Cost	100			
Installation	39			
Instrumentation and Controls	26			
Piping	31			
Electrical Systems	10			
Buildings (greenfield)	47			
Yard Improvements	12			
Service Facilities	55			
Total Direct Plant Costs	320			
Indirect Costs				
Engineering and Supervision	32			
Construction Expenses	34			
Legal Expenses	4			
Contractor's Fee	19			
Contingency	37			
Total Indirect Plant Costs	126			
Ratio Factor for FCI	446			

	AVIATION SUSTAINABILITY CENTER
Service Facilities	
Steam Generation	9.4
Steam Distribution	3.1
Water Supply/Cooling/F	Pumping 5.7
Water Treatment	4.1
Water Distribution	2.5
Electric Substation	4.1
Electric Distribution	3.1
Gas Supply/Distribution	0.9
Air Compression/Distrib	oution 3.1
Refrigeration	3.1
Process Waste Disposa	al 4.7
Sanitary Waste Disposa	al 1.3
Communications	0.6
Raw Material Storage	1.6
Finished-Product Storage	ge 4.7
Fire Protection System	1.6
Safety Installations	1.3

Repurposing Levels

Level	Repurposed Assets	Example
Low	Buildings, yard improvements,	Shuttered pulp mill
	portion of the service facilities	
Medium	pretreatment blow gas system,	Operational pulp mill
	yard improvements, portion of the	
	service facilities including boilers	
High	pretreatment department, yard	Operational acid bisulfite
	improvements, portion of the	pulp mill
	service facilities including boilers	

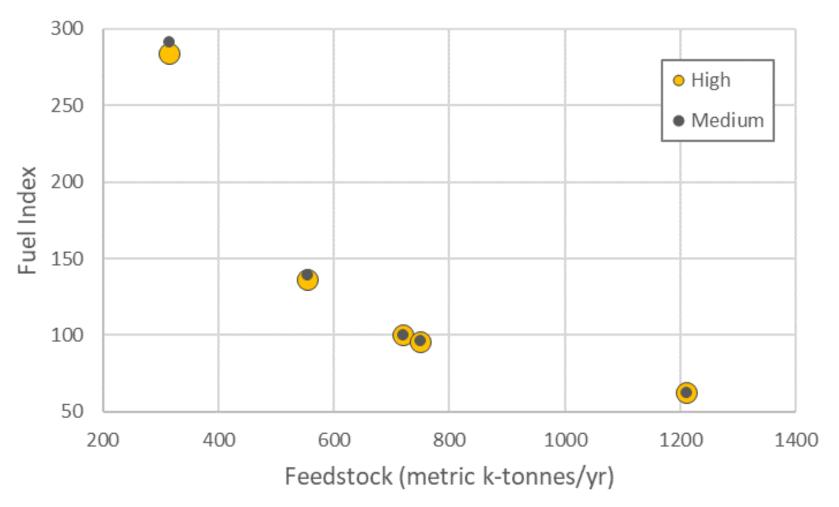
Generalized Ratio Factor Method for Repurposing

Ratio Factor Elements	Greenfield	Low	Medium	High
Other Direct	206	206	206	206
Buildings	47	7	7	7
Yard Improvements	12	0	0	0
Service Facilities	55	52	5	5
Total Direct Costs (DC)	320	265	218	218
Total Indirect Costs (IC)	126	126	126	126
FCI (direct + indirect)	446	391*	344*	344*

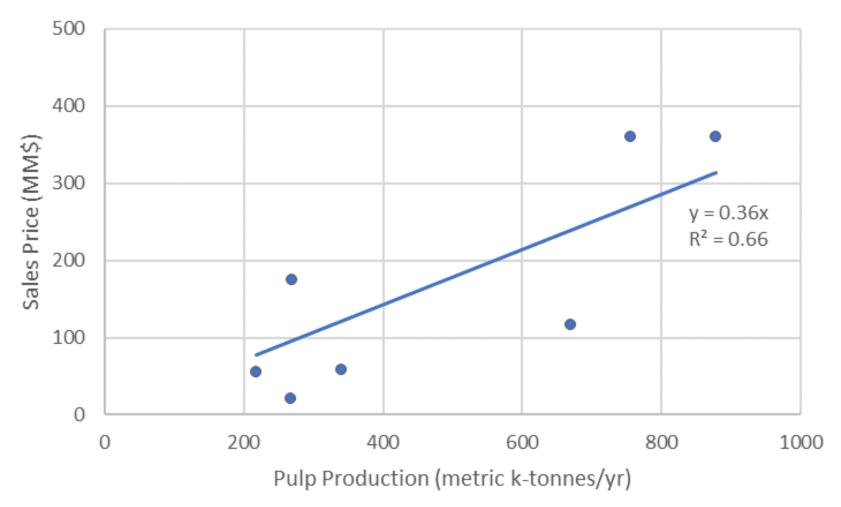
Adapted from Peters et al. 2003¹, *FCI ratio factor not applied to TDEC, use equation

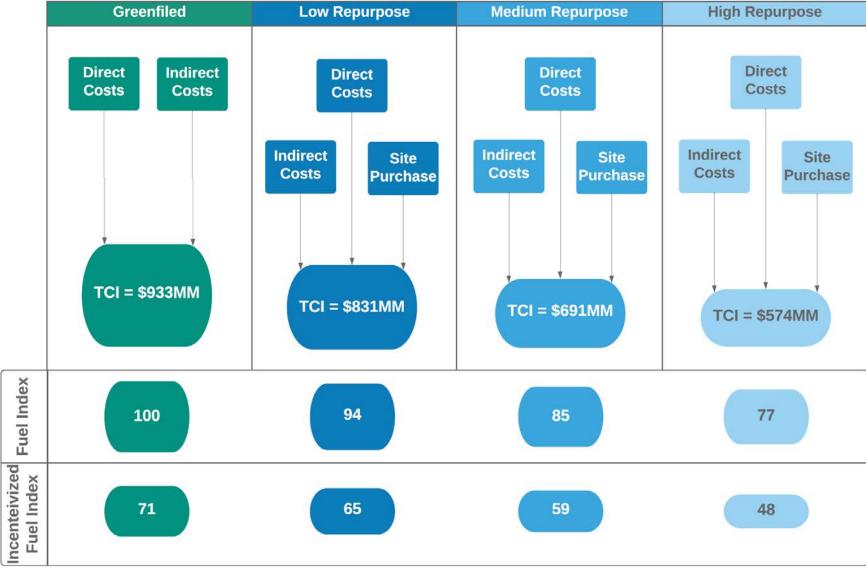
$$FCI_{RP} = (DC_{rf} \cdot TDEC_G) + (IC_{rf} \cdot TDEC_{RP}) + Site - Land$$

 $RP = repurposed$
 $G = greenfield$
 $rf = ratio factor$


Controlling Variables

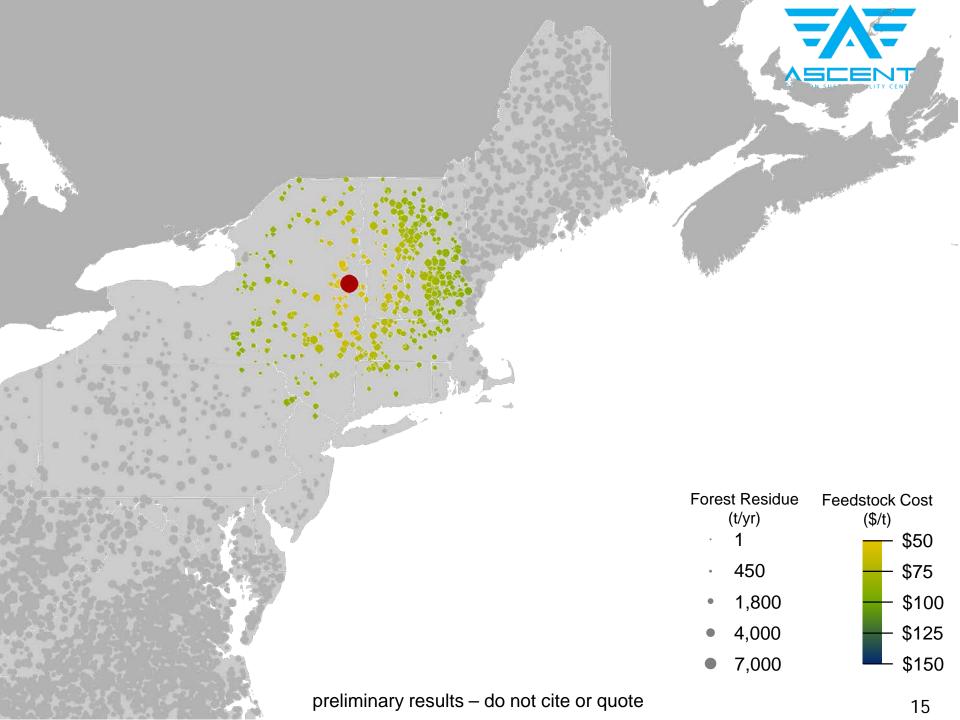
- Facility Scale
- Site Cost
- Repurposing Level
- Process Variables

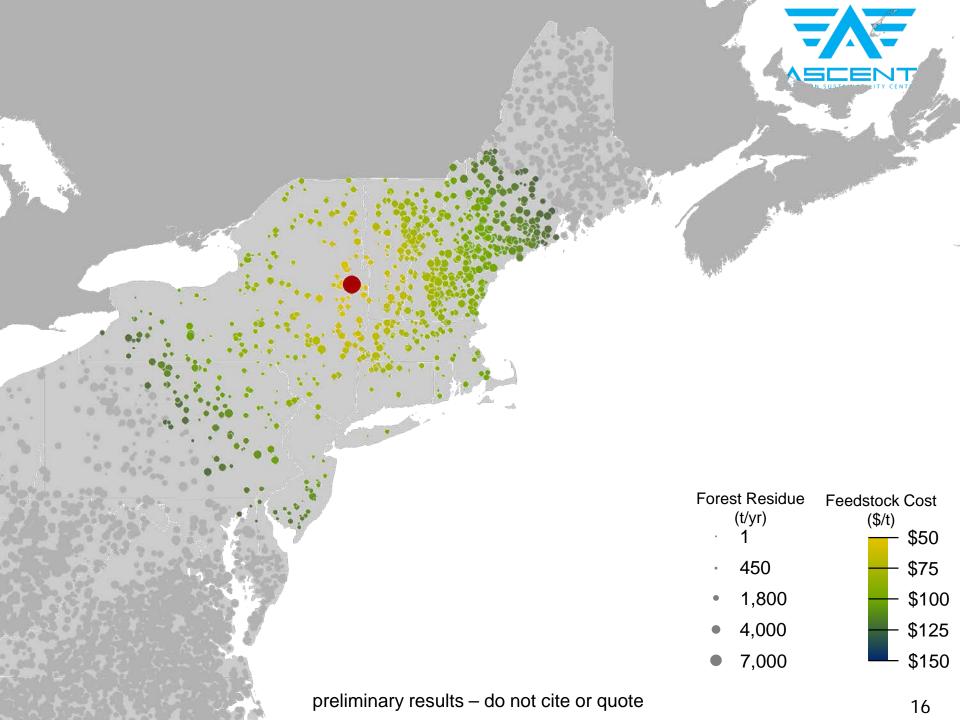

Facility Scale

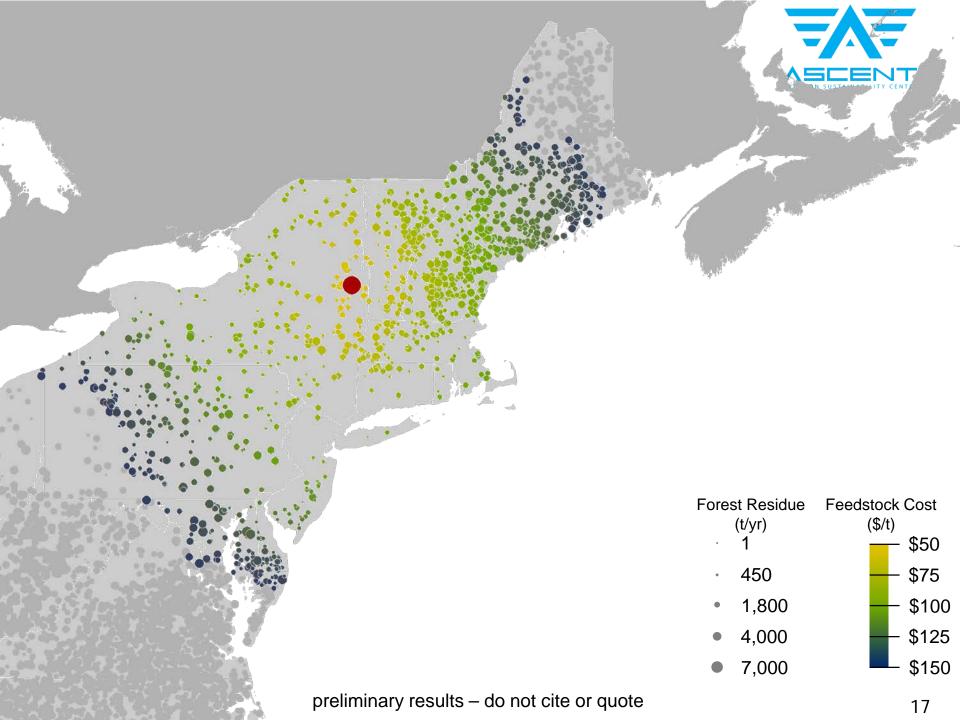

Site Purchase Cost

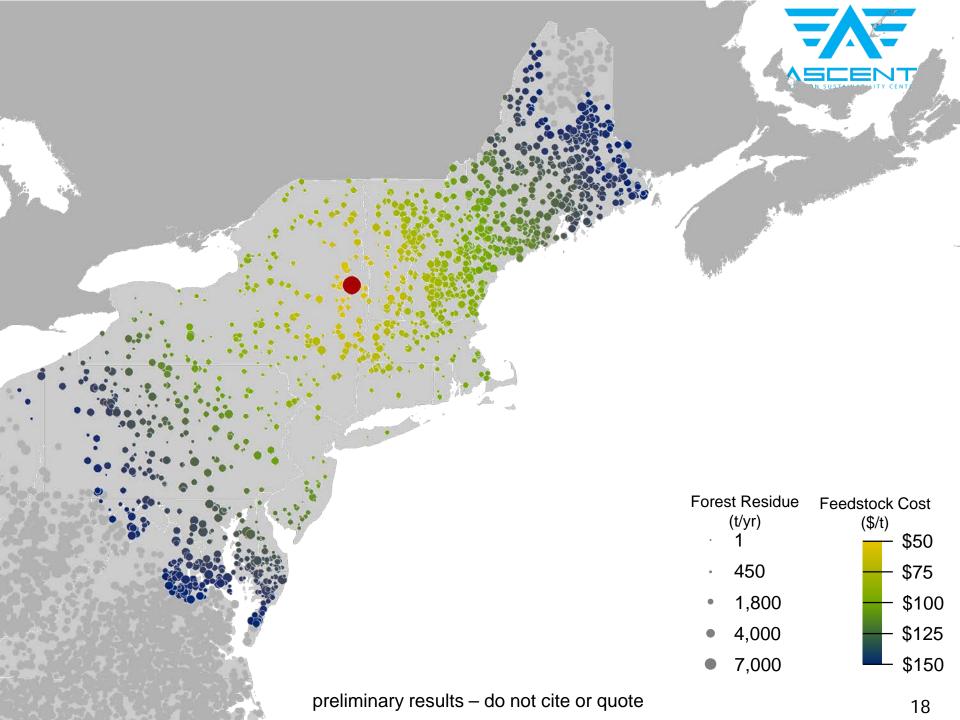
Repurposing Level

5-year national average values for: electricity¹⁰, natural gas¹¹, feedstock \$65/t mill gate¹²

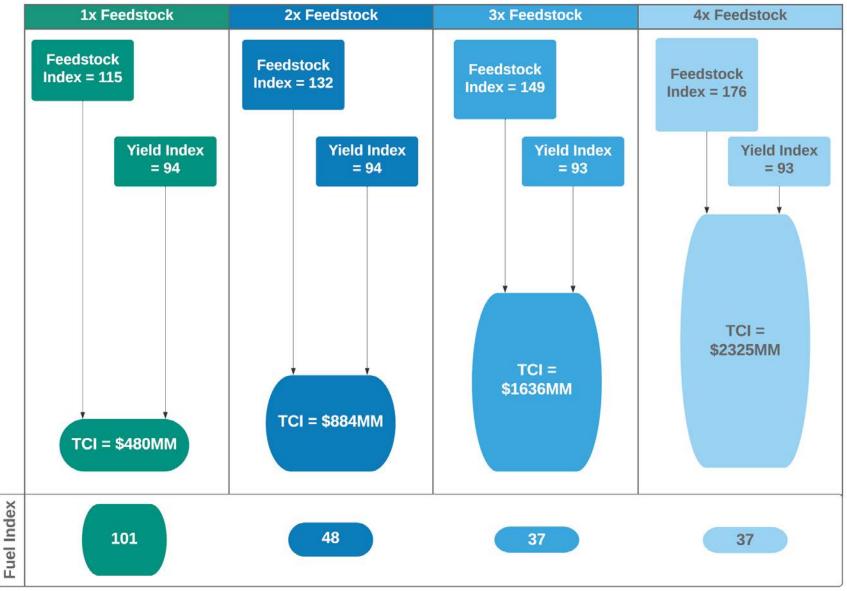

Process Variables




- Feedstock Cost
- Feedstock Composition
- Pulping time



Cosmo Specialty Fibers Cosmopolis,WA LignoTech USA Rothschild, WI Finch Paper Glen Falls, NY Rayonier Advanced Materials Fernandina Beach, FL



Finch Paper

Observations

- Repurposing lowers MSP
- Accurate results require greenfield and repurposed TDEC values
- Inclusion of site purchase cost matters
- Facility scale is more important than: electricity, natural gas, labor and feedstock prices
- Existing incentives may not be enough to reach price parity unless facilities are very large, requiring \$1 billion+ to repurpose.

References

- 1. Peters, M.S., Timmerhaus, K.D. and West, R.E. (2003). "Analysis of Cost Estimation" in Plant Design and Economics for Chemical Engineers, 5th edition. (New York, NY: McGraw-Hill), 226-278.
- 2. Briggeman, Kim. *Investment group buys Smurfit's Frenchtown mill*, Missoulian. May 5, 2011. Accessed 7/12/2019. https://missoulian.com/news/local/investment-group-buys-smurfit-s-frenchtown-mill/article_443bcff6-768e-11e0-a5de-001cc4c002e0.html
- 3. PULPAPERnews.com *Catalyst paper sells US mills*. May 28, 2018. Accessed 7/12/2019 http://www.pulpapernews.com/20180528/9697/catalyst-paper-sell-its-us-mills-us175-million
- 4. Fastmarkets RISI. *Corporate Strategy: New-Indy finishes Catawba buy, mill to stay in coated paper until conversion.* January 11, 2019. Accessed 7/12/2019. https://www.risiinfo.com/industry-news/corporate-strategy-new-indy-finishes-catawba-buy-mill-to-stay-in-coated-paper-until-conversion/
- 5. Valigra, Lori. *Chinese firm completes purchase of Old Town Mill, Bangor Daily News.* October 23, 2018. Accessed 7/12/19. https://bangordailynews.com/2018/10/23/business/chinese-firm-completes-purchase-of-old-town-mill/
- 6. Vermontbiz. *Brattleboro paper company sold, jobs saved.* Vermont Business Magazine. January 17, 2019. Accessed 7/12/19. https://vermontbiz.com/news/2019/january/07/brattleboro-paper-company-sold-jobs-saved
- 7. Balusik, Chris. *Goodbye Glatfelter, Hello Pixelle: Sale of Chillicothe's paper mill official.* Chillicothe Gazette. November 1, 2018. Accessed 7/12/2019. https://www.chillicothegazette.com/story/news/local/2018/11/01/goodbye-glatfelter-hello-pixelle-sale-chillicothes-paper-mills-official/1850192002/
- 8. Stock, Kyle. *Paper mill sold.* The Post and Courier. April 7, 2008. Accessed 7/12/2019. https://www.postandcourier.com/news/paper-mill-sold/article_2a94e06f-64e3-55f4-805a-765c812c9138.html
- 9. Gottlieb, Paul. *Paper mill prepares to reopen by end of year in Port Angeles*. Peninsula Daily News. September 1, 2019. Accessed 9/11/2019_https://www.peninsuladailynews.com/news/paper-mill-prepares-to-reopen-by-end-of-year-in-port-angeles/?utm_source=Sailthru&utm_medium=email&utm_campaign=Issue:%202019-09-11%20Waste%20Dive:%20Recycling%20%5Bissue:22922%5D&utm_term=Waste%20Dive:%20Recycling
- 10. EIA, 2019. U.S. Energy Information Administration. "Electricity: Detailed State Data. Average Price (Cents/kilowatthour) by State by Provider, 1990-2017." Last modified January 15, 2019. https://www.eia.gov/electricity/data/state/. Accessed 27 May 2019.
- 11. EIA, 2019. U.S. Energy Information Administration. "Wholesale electricity and natural gas market data". Last modified April 25, 2019. https://www.eia.gov/electricity/wholesale/#history. Accessed 27 May 2019.
- Martinkus, N., Latta, G., Morgan, T., and Wolcott, M. (2017). A comparison of methodologies for estimating delivered forest residue volume and cost to a wood-based biorefinery. Biomass and Bioenergy Vol. 106, 83-94. https://doi.org/10.1016/j.biombioe.2017.08.023.