# Aircraft Technology Modeling and Assessment Project 10

FAA Project Manager: Rangasayi Halthore, Laszlo Windhoffer

Georgia Tech (Lead University): Dimitri Mavris (PI), Jimmy Tai (Co-PI)

REs: Holger Pfaender, Mohammed Hassan

GRA Leads: Edan Baltman, Taylor Fazzini, Barbara Sampaio Felix, Rick Hong, Nikhil Iyengar, Kevyn Tran, Nathan Crane

October 22 & 23, 2019 Alexandria, VA

This research was funded by the U.S. Federal Aviation Administration Office of Environment and Energy through ASCENT, the FAA Center of Excellence for Alternative Jet Fuels and the Environment, project 10 through FAA Award Number 13-C-AJFE-GIT under the supervision of Rangasayi Halthore and Laszlo Windhoffer. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA.



# **Team Approach to Tasks**



**Overall Objective**: Investigating fleet impact of introducing supersonic transport (SST) in terms for fuel burn, emissions and noise, including sonic boom for various scenarios

| Objective |                                             | Georgia Tech                                                                                                                                                                                                                 | Purdue                                                                                                                                                                                                                                                                                                                                   |  |
|-----------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1         | Fleet Assumptions<br>& Demand<br>Assessment | Expand Airline cost model: Capture vehicle<br>performance sensitivities (passenger capacity, cruise<br>Mach number); Evaluate which size vehicle the most<br>likely to be able to close the business case                    | Airline fleet composition and network;<br>Passenger choice for supersonic / subsonic<br>demand; Effect of supersonic aircraft on subsonic<br>aircraft operations and pricing                                                                                                                                                             |  |
| 2         | Fleet Analysis                              | Develop assumptions for supersonic scenarios relative<br>to 12 previously developed subsonic focused fleet<br>scenarios. Perform fleet analysis with the gradual<br>introduction of SST vehicles into the fleet.             | Develop assumptions for supersonic scenarios<br>relative to 12 previously developed subsonic<br>focused fleet scenarios; Perform fleet-level<br>assessments, including additional SST vehicle types;<br>Develop FLEET-like tool for supersonic business jet<br>operations; Simple SST sizing to support FLEET<br>development and studies |  |
| 3         | AEDT Vehicle<br>Definition                  | Develop Methods to Model Supersonic Flights in AEDT                                                                                                                                                                          | n/a                                                                                                                                                                                                                                                                                                                                      |  |
| 4         | Support CAEP<br>Efforts                     | FASST Vehicle Modeling:<br>Develop additional SST class for 100 passengers;<br>Develop AEDT coefficient generation algorithm for<br>BADA3 supersonic coefficient; Perform trade studies to<br>support CAEP Exploratory Study | Provide representative supersonic demand<br>scenarios; Develop and assess airport noise model<br>to account for supersonic aircraft                                                                                                                                                                                                      |  |
| 5         | BADA4 Coefficient<br>Generation             | Develop, implement, and test BADA4 coefficient<br>generation algorithms; Identify gaps and needs for<br>BADA4 coefficient generation for SST                                                                                 | n/a                                                                                                                                                                                                                                                                                                                                      |  |
| 6         | Coordination                                | Coordinate with entities involved in CAEP Supersonic<br>Exploratory Study; Coordinate with clean-sheet<br>supersonic engine design project                                                                                   | Coordinate with entities involved in CAEP<br>MDG/FESG, particularly the SST demand task<br>group; Maintain ability to incorporate SST vehicle<br>models that use the engine design from ASCENT<br>project 47 and / or NASA-developed SST models                                                                                          |  |

# **Route Finder Algorithm**



## **Specific Route: London-Dubai**

- -Current high demand and even more so in the future
- Potentially complicated routing for overwater only supersonic flight

# **Testing algorithm capabilities**

- Can it find a good optimum?
- Demonstrate cruise Mach sensitivity of optimum routing
- Number of total accelerations/decelerations
- Time saved compared to conventional subsonic
- --> Key for market demand

# **Route Variables: London-Dubai**

ı.



|                                                            | Α                            | В                                                                      | С                                                                          |
|------------------------------------------------------------|------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Speed                                                      | M1.4                         | M2.2                                                                   | M2.2                                                                       |
| Time Savings                                               | 1.2 hours                    | 1.67 hours                                                             | 2.1 hours                                                                  |
| Accelerations                                              | 1                            | 3                                                                      | 4                                                                          |
| Coastal<br>Buffer<br>Optimized Track<br>Great Circle Track | 100nmi<br>Supersonic Segment | 100nmi<br>Great Circle Track<br>Optimized Track<br>Supersonic Segments | 50km/27nmi<br>Great Circle Track<br>Optimized Track<br>Supersonic Segments |

Buffer size matters quite a bit, at least on some routes Accelerations could be quite fuel intensive More than two could be prohibitive Depends a lot on vehicle performance

# **Route Variables: Dubai-Bangkok**



|                       | Α           | В                   | C                  |  |
|-----------------------|-------------|---------------------|--------------------|--|
| Speed                 | M1.4        | M2.2                | M2.2               |  |
| Time Savings          | 1.7 hours   | 2.6 hours           | 2.7 hours          |  |
| Accelerations         | 2           | 2                   | 1                  |  |
| <b>Coastal Buffer</b> | 100nmi      | 100nmi              | 100nmi             |  |
| Great Circle Track    |             | Great Circle Track  | Great Circle Track |  |
| Supersonic Segmen     | nts of Hack | Optimized Track     |                    |  |
|                       |             | Supersonic Segments | Supersonic Segment |  |

Cruise Mach significantly changes optimum route Potential trade between

- Additional accelerations
- Additional ground track distance

Depends on vehicle performance and weather

# **Improved Routing Algorithm Detail**



Route 8: WASHINGTON DULLES INTL to BENITO JUAREZ INTL Time Optimal - Supersonic Cruise Mach=1.4











# **Required Yield vs Time Savings**





Top 2050 routes, M=2.2, 27nmi buffer, Concorde Efficiency (for now)





### 

# **Design Mission Profile: All Supersonic**





# \_ **GT Medium SST (Flap Configuration)**

# **GT Medium SST Converged Solution** (4 Engines)



- **Converged Design Parameters:** •
  - Thrust-to-Weight = 0.367
  - Wing Loading = 92.2 psf
  - Empty Weight
  - Fuel Weight
  - Takeoff Gross Weight = 298,733 lb
  - SLS Thrust
  - Range

= 27,430 lb

= 128,411 lb

= 4500 nmi

- **Configuration Specs:** •
  - Cruise L/D: 7.52
    - M2.2, Alt. 65K, W = 192,000 lb
  - 4500 sq. in capture area engines
  - Wing area: ~3240 sq. ft
  - Tail area: ~365 sq. ft









# **Engine Architecture**



- Mixed Flow Turbofan •
  - Improved specific thrust (thrust per unit airflow) to control thrust lapse
  - 2 stage fan
  - Cooled turbines
  - 2D inlet
  - Axisymmetric CD nozzle



# **Cabin Layout – Summary**

VIP Class

- Seat pitch: 45 in
- Seat Width: 24 in (31 in w/ arm rest)
- Isle width: 22 in

First Class

- Seat pitch: 37.5 in
- Seat width: 21 in (27 in w/ arm rest)
- Isle width: 22 in

Length of passenger cabin: 80 ft



**Cabin Layout** 







# Sample Route: IAD – MEX (Medium SST Results)

• GT Medium SST flown following target Mach profile





| <b>OPERATING WEIGHT EMPTY</b> | 128411  | LB       |
|-------------------------------|---------|----------|
| PAYLOAD                       | 11550   | LB       |
| MAXIMUM FUEL                  | 65217   | LB       |
| GROSS WEIGHT                  | 205177  | LB       |
| <b>REFERENCE WING AREA</b>    | 3239.34 | SQ FT    |
| WING LOADING                  | 63.34   | LB/SQ FT |
| THRUST PER ENGINE             | 27430   | LB       |
| THRUST-WEIGHT RATIO           | 0.535   |          |
| RANGE                         | 1894    | NMI      |
| BLOCK TIME                    | 2.41    | HOURS    |
| BLOCK FUEL                    | 60175   | POUNDS   |

Route 8: WASHINGTON DULLES INTL to BENITO JUAREZ INTL Time Optimal - Supersonic Cruise Mach=1.4



# Sample Route: LHR – JFK (Medium SST Results)



# **Summary Remarks & Next Steps**



- Developed constrained optimization algorithm for modeling routes
- Completed preliminary FASST development
- Converged GT Medium SST
  - 55 passenger
  - Mach 2.2
  - 4500 nmi design range
- "Flew" both NASA STCA and GT Medium SST on two sample routes
- Next steps:
  - 100 passenger SST
  - AEDT supersonic modeling
  - Continual support of CAEP SST Exploratory Study