Alternative Jet Fuel Test Database Library Project 33

Lead Investigator: Tonghun Lee

Department of Mechanical Science & Engineering University of Illinois, Urbana-Champaign

Program Manager: Cecilia Shaw

October 22 & 23, 2019 Alexandria, VA

This research was funded by the U.S. Federal Aviation Administration Office of Environment and Energy through ASCENT, the FAA Center of Excellence for Alternative Jet Fuels and the Environment, project 033 through FAA Award Number 13-C-AFJE-UI-015 under the supervision of Cecilia Shaw. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA.

Introduction: Alternative Jet Fuel Test Database

COE Alternative Jet Fuels & Environment

- Program Manager: Cecilia Shaw
- Former Graduate Sudent: Anna Oldani

A foundational database of current & emerging alternative jet fuels

- Integrate jet fuel data into comprehensive, common archive
- Centralize AJF development knowledge to aid in design and certification of new jet fuels
- Support alternative fuels research and certification for national and international policies and multi-stakeholder initiatives
- Increase accessibility to fuel testing data and approval reporting to support nascent industry

Over 25,000 fuel records to date

This project has received funding from the Federal Aviation Administration Office of Environment and Energy ASCENT Project 033 Award Number: 13-C-AFJE-UI-015. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA or other ASCENT Sponsors.

Focus on Critical Fuel Property Data

This project has received funding from the Federal Aviation Administration Office of Environment and Energy ASCENT Project 033 Award Number: 13-C-AFJE-UI-015. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA or other ASCENT Sponsors.

JETSCREEN – Fuel Database

ram

Authors: Bastian Rauch (DLR), Simon Blakey (USFD / UoB)

Partners involved: The **Deutsches Zentrum** University für Luft- und Raumfahrt Of German Aerospace Center Sheffield. Obje hable database fo: De e properties of pote ain data in addition JETSCREEN TION SUSTAINABILIT Em^A Screening (prior) and streamlining alternative aviation fuel approval process eliable desig **Alternative Jet Fuel Test Database**

FAA COE Alternative Jet Fuels & Environment

iero-engine

Jet Fuel Screening & Optimization EU Horizon 2020 Research & Innovation

Timeline

Existing Issues & Needs

Issues	Uncoordinated fuel data storage systems	 Coordinate fuel data archiving 	
	Inconsistent fuel analysis records	 Facilitate airport fuel analysis reportin 	
	Uninformed fuel processing/logistics systems	 Track fuel supply information 	
Needs	Integrated data & dissemination	 Link upstream JETSCREEN-AJFTD 	
	Archiving of fuels in use	 Archiving of actual fuels in use (real time) 	

Identified Targets

Common Data Schema – non relational format

- Include Tier 2, 3, and 4 properties, life cycle assessment, and impact on system components
- Need to understand complexities of extended data sets beyond standardized Tier 1 testing
- Assess ability to incorporate novel analysis methods (GC x GC)

Integrate Databases

- Identify currently available databases housing fuel test method evaluations
- Include measurement uncertainties of applied testing methods
- Detailed **global fuel dataset** under common schema for conventional, alternative, and blends

Maintain Proprietary Datasets

- **Common interface**, maintain distinct backends (MongoDB, DynamoDB)
- Different access levels by user group

Develop and Apply Analysis Tools

- Specialized analysis tools based on programming platform and user needs
- Employ specification property, performance, and/or end-use/emissions targeted tools

Collaborative DB Architecture

Unify Disparate Data

Impact 1: Screening & Safety

Develop screening guides to assess new fuels

- Accelerate approval through early-stage pre-screening
- Assist fuel producers with access to AJF property data

Coordinate fuel data with global aviation data

- Track flight & aircraft system issues with fuel supply data
- Investigate fuel-related system or component failures

Expand fuel & flight data records

- Connect AJF blend & flight data (maintenance, emissions,..)
- **Demonstrate AJF safety & compatibility** in current systems
- Increase market support for continued AJF integration

Enhanced Fuel Screening

Fuel specification	Min	Max	Fuel Sample	Whisker Chart
Colour			30	├───└ <u>Т</u> ◆
Acidity (mg KOH/g)	0	0.015	0.002	
Aromatics IP 156 (%vol)	0	25	1.8	· ;←
Sulphur (%mass)	0	0.3	0.018	
Mercaptan (%mass)	0	0.003	0	
IBP (degC)			148.8	
10% (degC)		205	169.8	
50% (degC)			198.7	
90% (degC)			235.1	
FBP (degC)		300	251.9	┝╼┫
Flash point (degC)	38		41.5	
Density @15degC (kg/m3)	775	840	759.6	♦ ┆┝-᠋ᢕ-┤┤
Freezing point (degC)		-47	-59	
Viscosity @-20degC (cSt)	0	8	3.885	+ ₽ +i
Smoke point (mm)	5		50	+ ⊡ - →
Naphthalenes (%vol) if SP > 25mm		3	0	
Specific Energy (MJ/kg)	42.8		44.023	┆┼─Ш┤ 🔍
Existent Gum (mg/100 ml)		7	1	<u> </u>
MSEP	85		99	├

A new fuel, some properties within spec, but outside experience:

Solid lines represent distribution of the conventional fuels in the database

Dashed lines represent the limits of the specification

Properties within
specification, and within range of fuels already in use

Properties outside of specification

Properties outside of norm, but within specification

Online access to JETSCREEN data

12

AVIATION SUSTAINABILITY CENTER

Gen II AJFTD Fuel Tool – Now Live

Impact 2: Engineering & Science

Statistical analysis / feature detection for aircraft-related fuel properties

 Facilitate design of aircraft components impacted by fuel properties

Development & validation of statistical & physical-based models

- Streamline approval, reduce early stage testing
- Enhance development & production of alternative fuels

More widely...

Impact 3: System Operations

Track properties of fuels in use: processing, supply chain, end use

• Improve quality control in fuel production & supply

Increase data access for airports & airlines

- Demonstrate safe usage of AJFs with detailed supply info
- Build trust between producers, suppliers, & consumers

Expand operational data compilation & dissemination

• Increase system optimization across industry

Is actual flight fuel data logging possible?

Summary & Future Steps

Integration of other data from CORSEA, CAAFI, etc.

Continue coordination & merging of AJFTD & JETSCREEN databases Expand Database to address needs of producers, airlines, OEMs, & other stakeholders

Extend Database to house real time data across actual flights **Opportunity** to increase operational safety, support new fuel integration

Global fuel database & tracking system

Questions

Tonghun Lee: tonghun@Illinois.edu

Bastian Rauch: Bastian.Rauch@dlr.de

Simon Blakey: s.blakey@sheffield.ac.uk

- May include CORSIA relevant emissions data
 Tracking fuels within the system
 Methods for receiving / storing data need to be developed
- CAAFI: Pre-screening relevant data
- Include fuel production information (when available), LCA, etc.
- We expect **non-CO₂ impacts** to become increasingly important
 - Storage and information system already in place
- Fuel data across Europe and around the globe
 Vision of extending connection to other databases

Data Conversion Incentives

Accelerate data retrieval

Enable statistical analyses with robust correlations

Easily identify unusual data (misreported, outliers, ...) Facilitate collaboration with related programs and data sharing