

NASA Aeronautics

Vision for Aviation in the 21st Century

ARMD continues
to evolve and
execute the
Aeronautics Strategy
https://www.nasa.gov/
aeroresearch/strategy

Transition to Alternative Propulsion and Energy

In-Time System-Wide Safety Assurance

Assured Autonomy for Aviation Transformation

U.S. leadership for a new era of flight

NASA Aeronautics Research Programs

Aligned with Strategic Thrusts

MISSION PROGRAMS

Airspace Operations & Safety

Advanced Air Vehicles

Integrated Aviation Systems

Transformative Aeronautical Concepts

SEEDLING PROGRAM

FY 2020 Budget Request - Aeronautics

\$ Millions	FY 2018	FY 2019	FY 2020	FY 2021	FY 2022	FY 2023	FY 2024
Aeronautics	\$690.0	\$725.0	\$666.9	\$673.6	\$680.3	\$587.1	\$587.0
Airspace Operations and Safety	118.7		121.2	130.6	133.5	136.2	138.9
Advanced Air Vehicles	237.7		188.1	203.3	212.2	219.3	224.2
Integrated Aviation Systems	221.5		233.2	209.4	202.2	97.1	87.2
Transformative Aeronautics Concepts	112.2		124.4	130.3	132.3	134.6	136.7

FY 2018 reflects funding amounts specified in Public Law 115-41, Consolidated Appropriations Act, 2018, as adjusted by NASA's FY 2018 Operating Plan. FY 2019 reflects funding as enacted under Public Law 116-06.

Beginning in FY 2020, Aeronautics budget no longer includes the Aeronautics Evaluation and Test Capabilities (AETC) portfolio of approximately \$56M. AETC was transferred to the Mission Support Directorate as Agency-level function.

supersonics

value via speed at cruise

vertical flight

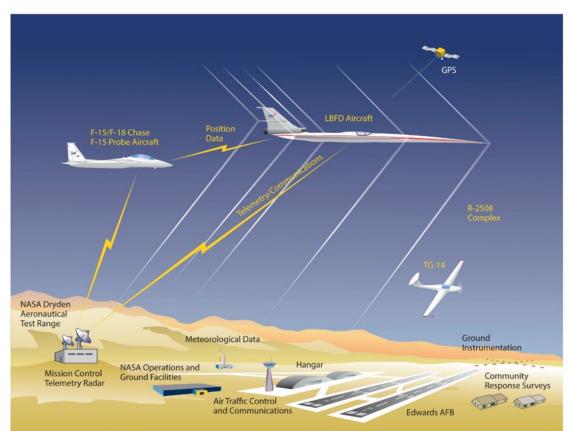
value through accessibility

Subsonics (transports)

the 24/7 global backbone of air transportation now and into the foreseeable future

Low-Boom Flight Demonstration Phases

Phase 1 - Aircraft Development


- Detailed Design
- Fabrication, Integration, Ground Test
- Checkout Flights
- Envelope Expansion

Phase 2 – Acoustic Validation

 Measuring and characterizing the sonic boom thump

<u>Phase 3 – Community Response</u>

- Initial community response overflight study
- Multiple campaigns over representative communities and weather across the U.S.

Overcoming the Barrier to Supersonic Overland Flight

Low-Boom Flight Demonstrator (LBFD) Project

Phase 1 – Aircraft Development

- Awarded design and build contract to Lockheed Martin
- Completed "Key Decision Point" major review to baseline project
- Initial fabrication underway
- Critical Design Review September 9-13, 2019
- First Flight commitment is January 2022... planning to fly in FY 2021

Low-Boom Flight Demonstration Mission

Phase 2 & 3 Related Activities

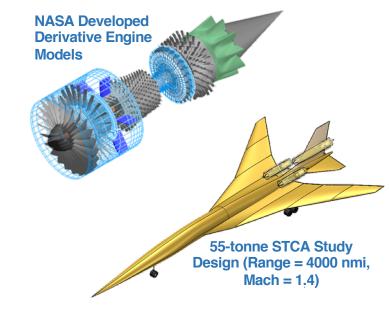
Community Test Risk Reduction – Quiet Supersonic Flights 2018 (QSF18)

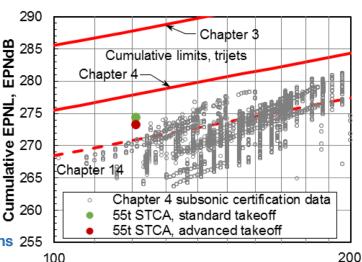
 Initial data review complete, contractor report delivered and in preparation for release

Acoustic Validation Test Risk Reduction

- Carpet Determination In Entirety Measurements (CarpetDIEM)
 - Developmental test for measurement of wide sonic footprint of X-59
 - 25 n.mi wide microphone array (one half of full carpet)
 - Focus on land access and array deployment, microphone triggering
 - Second test planned for Summer 2020

Community Test Methods Virtual Workshop


- Engage international research community in X-59 test preparation
- Present NASA approach and lessons learned for community testing during QSF18
- Follow on Face-to-Face Workshop planned for Fall 2020



Near-term efforts: ICAO/FAA Technical Support **Landing/Takeoff Noise and Emissions Procedures for Supersonic Transports**

- Emergence of near-term market entrants has spurred a need for certification standards
- FAA and ICAO are engaged in parallel, coordinated processes
- In addition to company data, both organizations need independent analysis and trade study data to inform the standards process
- NASA is supporting this effort with the development of Supersonic Technology Concept Aeroplanes (STCA)
 - Effort is coordinated with Industry for consensus on methods and assumptions
 - Scope includes assessment of advanced procedures and technology/design trades
- NASA effort also includes targeted testing and analysis to reduce uncertainty in noise models
- 2020 AIAA SciTech Special Session "Community Noise Impact from Supersonic Transports"; this will be the public release of NASA's STCA design study, done for **ICAO**

55t STCA EPNL Predictions 255 (With Wing Shielding)

100

Maximum Takeoff Gross Weight, 1000lb

supersonics

value via speed at cruise

vertical flight

value through accessibility

Subsonics (transports)

the 24/7 global backbone of air transportation now and into the foreseeable future

NASA UAM Vision, Framework, Barriers

Policy, Certification, and Technical Challenges for Operating in the NAS

- 1. Airspace Design
- Operational Rules, Roles, & Procedures
- 3. CNS & Control Facility/Infrastructure
- 4. UAM Port Design

- 1. Public Acceptance
- 2. Supporting Infrastructure
- 3. Operational Integration
- 4. Local Regulatory Environment & Liability

Community Integration

- 1. Safe ATM Ops
- 2. Efficient ATM Ops
- 3. Scalable ATM Ops
- 4. Fleet Management
- 5. Urban Weather Prediction

Airspace
System Design
&
Implementation

Air Traffic & Fleet Operations Management

Vehicle
Development &
Production

Individual
Vehicle
Management &
Operations

- 1. Vehicle Design & Integration
- 2. Airworthiness Standards & Certification
- 3. Manufacturing
- 4. Vehicle Noise
- 5. Weather-Tolerant Vehicles
- 6. Cabin Acceptability

"Development"

Urban Air Mobility (UAM) Vision

Revolutionize mobility within metropolitan areas by enabling a safe, efficient, convenient, affordable, and accessible air transportation system for passengers and cargo

- 1. Safe Urban Flight Management
- 2. Scalable Vehicle Ops
- 3. Certification & Ops Approval
- 4. Ground Ops & Maintenance

"Operations"

UAM VTOL Vehicle – Propulsion and Noise

Propulsion barrier

Safe, reliable, low maintenance operations needed

- new electric propulsion architectures do not have proven in-flight experience
- thermal management will significantly impact the safety, reliability, life, and weight of the system
- need to inform design/test standards & have validated tools to support certification.

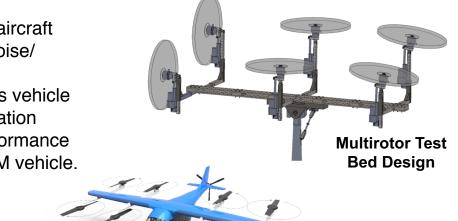
Test setup in the E-Drives Rig at GRC

What are we trying to do?

Develop design/test guidelines, acquire data, explore new concepts - to improve propulsion component reliability by several orders of magnitude over SOA technology for UAM electric & hybrid-electric VTOL vehicles.

UAM Reference

Vehicle


Noise barrier

Noise likely a barrier to public acceptance of multi-rotor aircraft

- a validated/documented methodology for assessing noise/ efficiency tradeoffs needed
- will enable government & vehicle developers to assess vehicle noise impact on the community, explore feasible mitigation strategies for the different vehicles, or assess the performance reductions that are required to design a low-noise UAM vehicle.

What are we trying to do?

Develop, demonstrate, validate, document a set of conceptual design tools capable of assessing the tradeoffs between UAM vehicle noise and efficiency.

The UAM "Grand Challenge" Series

 Challenging the industry to execute ecosystem-wide systems level safety and integration scenarios

- Raises the water level for all
- Builds knowledge base for requirements/standards
- No purse or prize money

Support requirements & system development for scalable, commercial UAM through integrated demonstrations of realistic safety/operational scenarios

Announcement of Opportunity posted to FedBizOpps on Oct. 10, 2019.

supersonics

value via speed at cruise

vertical flight

value through accessibility

Subsonics (transports)

the 24/7 global backbone of air transportation now and into the foreseeable future

Subsonic Transport Technology Development

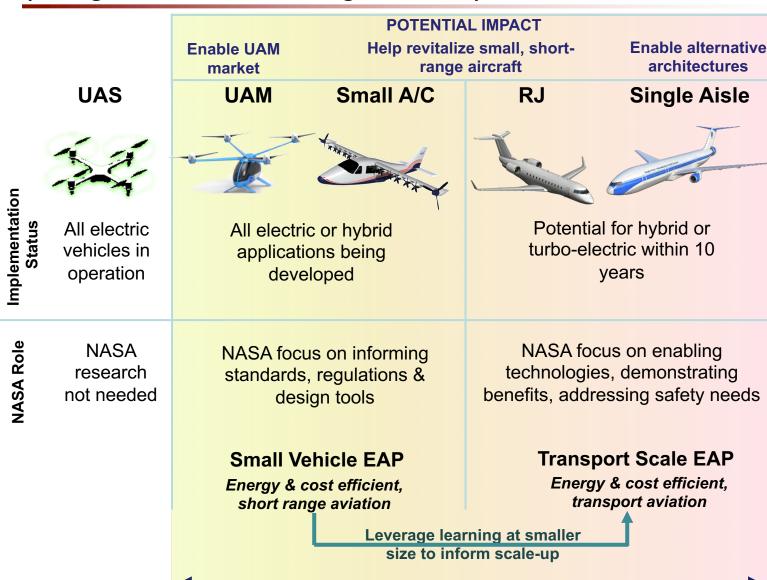
Suite of five Key Technologies coupled into transformative configurations will have a tremendous impact:

- Ultra-efficient wing
- Unconventional structure
- Novel propulsion airframe integration
- Electrified aircraft propulsion
- Small core gas turbine propulsion

ARMD is advancing these key technologies to create market opportunities

Very High Aspect Ratio Wing

Boundary Layer Ingestion



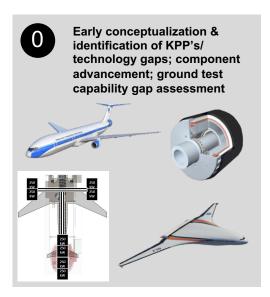
Electrified Aircraft Propulsion

Electrified Aircraft Propulsion – a 60,000 ft Perspective

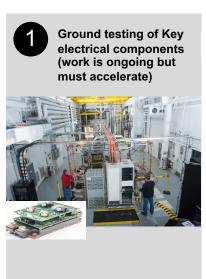
Fundamental challenges span range of sizes

(a range of vehicles and range of needs)

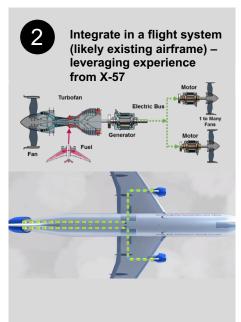
Twin Aisle



Significant progress needed for practical implementation


Still too long term – not yet a NASA focus

Transport-Class Advancing Technical & Integration Readiness



2009-2015
TRL 1-2
NASA in-house & NASA-sponsored university/industry efforts advancing
MW motors & inverters for EAP

2016-2018+ TRL ~3 NASA in-house & industry efforts raise the TRL level of motors and inverters

TRL ~4
NASA in-house & industry efforts
leading to ground demo of TRL 4
level end-to-end power system

2018-2020

 Learning to inform further fundamental research

TRL 5-6
Flight demo of end-to-end MW
EAP power system with
application to transport aircraft.

2021-2023

Multiple Aspects to Electrified Aviation Propulsion

EAP encompasses more than just electrical components:

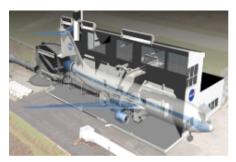
Electrical generation, storage and distribution

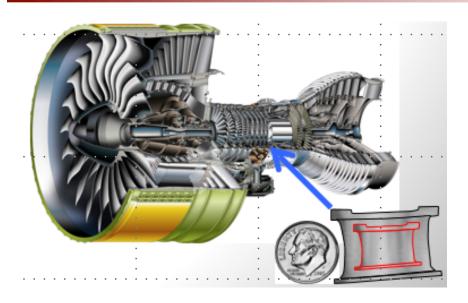
- Electrical power components (e.g. inverters, motors, generators & systems)
- Power storage
- Power extraction
- System architectures

Coupled turbine systems

- Small core turbomachinery
- New material systems

System benefits


- Novel propulsion airframe integration
- Systems analysis tools
- Test capabilities



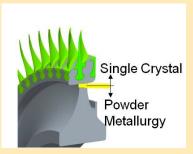
Electrified Aircraft Propulsion (EAP) – the suite of technologies and capabilities that will enable air vehicles to leverage benefits of electricity in their propulsion systems.

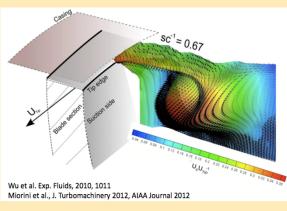
Small Core Gas Turbine Propulsion

APPLIES TO DUCTED FAN, OPEN FAN, OR HYBRID SYSTEM

LOW NOX COMBUSTOR

NASA CE-5 Combustor Sector test:


- Single-cup sector; 265 psia, 1150 F inlet to rig
- Alternative-fuel blending at rig


Demonstrated low-emission fuel-flexible combustor concept for emission reduction to 80% below CAEP6 at TRL 3 – combustor concept, design approach, test & analysis results. Preferred concept recommended for higher fidelity research

Advanced casing treatments can improve compressor stall margin by +10%. Gain can be traded for efficiency improvement. Significance: Improve small core engine compressor efficiency contribute to overall fuel burn reduction.

HIGH EFFICIENCY COMPRESSOR

Tip/Endwall
Aerodynamic Loss Mitigation

Other Important Items

- Overall strong support from key stakeholders
- On the verge of completing several projects outreach and communications on results is on-going
 - Advanced Composites
 - UAS in the NAS
 - Airspace Demonstrations
- Continued support for our larger testing facilities at the Agency level
- NASA Aeronautics leadership changes:
 - Dr. Jaiwon Shin retirement (Aug. 2019)
 - Mr. Bob Pearce named Acting Associate Administrator (Sep. 2019)
 - Dr. Jimmy Kenyon selected as Program Director, Advanced Air Vehicles Program (July 2019)

www.massa.gow

Thank you