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1.  Project Overview 

Air traffic delays due to congestion in the National Airspace System (NAS) are a source of unnecessary cost to 
airlines, passengers, and air transportation dependent businesses. Congestion is estimated to cost the aviation 
industry, passengers, and shippers approximately $10 billion per year [Deehan, 2006]. This cost can be further 
segregated into a $6 billion impact upon direct airline operating costs and a $4 billion impact upon the value of 
collective passenger time. 

Delays also have an environmental cost. Because of congestion, aircraft are often forced to fly far from the cruise 
altitude and/or the cruise speed for which they are designed. Such sub-optimality results in unnecessary fuel burn 
and gaseous emission that give rise to environmental concerns both globally and locally at ground level. The 
significant magnitude of air traffic delays presently observed is an indication that the current air traffic control 
infrastructure is not capable of handing current traffic levels. Given the forecast growth in aviation over the next 
decade there is an urgent need air traffic control decision-support or automation tools to address the problem of 
congestion in the NAS. 

In this report, we propose methods to investigate and quantify the economic and environmental benefits of 
optimization tools that en route air traffic controllers could use. More specifically, we develop mathematical models for 
conflict-free optimal trajectories over a volume of airspace and for continuous descent arrivals. We present 
computational studies and demonstrate savings due to proposed algorithms using traffic through Cleveland Air Route 
Traffic Control Center (ARTCC), one of the most congested airspaces in the US. 

We also determine the environmental benefits in terms of the change in the amount of emissions that are produced 
by aircraft. The fuel burn is determined using data for aircraft performance and fuel burn that has been made 
available through an on-going nondisclosure agreement with Boeing, and using Base of Aircraft Data (BADA) in the 
case of other aircraft where this data is not available.  

Overall, prototype algorithms for a tool that air traffic controllers could use to optimally control aircraft are developed. 
This also enables the quantification of the economic and environmental benefits of optimization in en route airspace. 
The two main sections of this report are structured as follows: In Section 2, we study en route traffic optimization and 
develop static and dynamic conflict resolution algorithms to optimally route aircraft. In Section 3, we consider arriving 
aircraft only, and describe a speed-change based optimization procedure for use in a continuous descent arrival 
context.  
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2. En Route Traffic Optimization 

Development of advanced air traffic conflict detection and resolution algorithms is important to the overall 
improvement of the air traffic management (ATM) system. This is especially true when one considers issues of safety 
and capacity within the context of growing air traffic, as well as their environmental implications.  

In this section, we consider optimizing tactical control of aircraft to maintain separation while considering associated 
fuel costs with any heading deviation or speed changes. Safety requirements are considered as hard constraints that 
must be maintained.  The objective function of the optimization program focuses on minimizing fuel costs, and hence 
the resulting environmental impact.  

A conflict in air traffic occurs when two or more aircraft encroach the minimum required separation, as defined by the 
regulator. Conflict detection is the identification of potential conflicts through prediction of future aircraft trajectories 
based on their current positions, headings and flight plans. Once a conflict is detected, it is resolved by changing the 
flight plan of one or more aircraft so that the minimum separation requirements are satisfied. However, the overall 
goal is to ensure conflict-free optimal trajectories for all aircraft from entrance to exit within a volume of airspace. In 
this regard, we first develop a static conflict resolution algorithm, and then use it to dynamically create conflict-free 
trajectories for aircraft.  

 

2.1. Prior Research in Conflict Resolution 

Aircraft conflict detection and resolution has been studied extensively in the literature. A comprehensive survey of the 
proposed models is presented in Kuchar and Yang (2000). Since the publication of that survey, several other 
methods have been introduced. The approaches developed over the past few years include a 3D model based on a 
collision cone approach (Goss et al. 2004). However, the solution of the model requires significant computational 
effort. Another computationally intensive approach, suggested by the authors of Hu et al. (2002), requires the 
identification of all conflict-free maneuvers, and the selection of the best such maneuver. In another recent study, the 
authors of Vivona et al. (2006) suggest a genetic algorithm approach based on a predefined set of maneuvers for 
aircraft, while the authors of Idris et al. (2003) describe a time-based conflict resolution algorithm. 

There exist two recent conflict resolution models that are directly related to the approach described in this study. Both 
of these methods contain integer programming models, which enable relatively fast calculations of an optimal conflict 
resolution procedure. In the first study, Pallottino et al. (2002), an integer programming model is developed by 
assuming that aircraft can perform either a speed change or a heading change, but not both. The objective of the 
conflict resolution algorithm is defined as the minimization of the maximum deviation in the changes made. In the 
second study, Hylkema and Visser (2003), a similar integer programming model, that also accounts for controller 
workload is discussed. However, the model again assumes that only heading changes are allowed to resolve conflict.  

 

2.2. Methodology Overview 

In this report, we significantly extend ideas presented in Pallottino et al. (2002) to a more general case where both 
heading and speed changes are allowed, and where more complex objectives are considered, including minimization 
of fuel costs required to return to the desired flight path after a heading change. 



In Kuchar and Yang (2000), the existing conflict detection and resolution methods are characterized according to 
considered scope, dimensions, resolution methodology and maneuvers. Following this categorization, our proposed 
approach is a global conflict resolution procedure for all aircraft that are involved in a conflict. Although, the conflict 
resolution procedure is described in the horizontal plane only, adaptation to vertical planes is done simply by 
assuming multiple horizontal layers and introducing variables modeling the movements between these layers.  

The developed mathematical model, resulting in a mixed integer linear program, provides a broad framework for 
resolving conflicts through fast numerical optimization methods, and allows for both heading and speed changes. 
Particular focus has been placed on reducing fuel costs involved in conflict resolution. As noted earlier, this is 
important given the significant role that fuel plays in the operating cost of aircraft and the growing concern regarding 
the impact of gaseous emissions on the environment. Another significant aspect of the proposed approach is the 
ability to solve a complex problem in near real-time for conflicts involving a large number of aircraft. Hence, in 
addition to real time implementations, the proposed model can be used within test and simulation environments for air 
traffic control such as in capacity calculations of sectors or in studies of the free flight concept. 

The following subsections provide a general description of the problem; the mathematical descriptions of the 
separation constraints required for conflict resolution; linear approximations of the complex fuel cost structures; 
results of the computational studies performed; method for real-time implementation in a center environment, and 
subsequent analysis. 

 

2.3. Problem Description 

Consider a set of  aircraft located in a Euclidean plane.  Each aircraft i  is defined by an initial position 
, a velocity vector 

  
 defining speed and heading, and a desired final heading 

[

n
]  

r 
p i = xi yi[ T

Θ i
d

r 
v i = vi,x vi,y[ T

0

]
FIGURE 2.1]. Additionally, all aircraft are designated to be a particular model type with corresponding fuel burn 

characteristics for the given altitude. Sample “fuel burn curves” at 33,000 ft (FL330) for three different types of aircraft 
are shown in FIGURE 2.2, based on data obtained from the Aircraft Performance Summary Tables for the Base of 
Aircraft Data, (BADA), Nuic (2004). In this plot, fuel costs are scaled such that a level of 1 corresponds to the 
minimum fuel burn level for the given aircraft type. The primary task is to assign each aircraft a single instantaneous 
heading and speed change at  that provides conflict-free travel, while minimizing a measure of the fuel burn 
costs over all the trajectories. 

t =

 

       
FIGURE 2.1 Aircraft are defined by initial positions and velocities.  Changes to their velocities are made to avoid 
conflict. 
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FIGURE 2.2 Sample fuel curves for aircraft at FL330 

 
The trajectory of any aircraft  is deemed to be conflict free if the distance between aircraft  and any other aircrafti i j , 

, will always be greater than the minimum distance of .  For the purpose of commercial air travel, the 
nominal minimum separation distance, , between aircraft is 5NM. The minimum separation distance can be 
visualized by encircling each aircraft with a safety region of radius .  

di, j = d j,i di, j
min

d /2
d

The separation constraint can be expressed by the following equation 

 

xdist
2 + ydist

2 ≥ di, j
min  ∀ t ε ℜ+   

EQUATION 2.1 Separation Condition 

where xdist  and  represent the distance between the two aircraft in the corresponding coordinate axes, and are 
defined by: 

ydist

 
xdist = xi + vi,xt( )− x j + v j,xt( ) 

ydist = yi + vi,yt( )− y j + v j,yt( ) 
 
Over the next few subsections, we describe a methodology for formulating a fuel-optimal conflict resolution model 
that ensures that separation conditions of 5NM hold for all time.  Unlike most models in the literature, the process 
yields a mixed integer linear programming problem, which is solvable in near real time for dynamic routing decisions.  

Before describing the details of the proposed approach, we first list some initialization assumptions.  We assume that 
no aircraft break minimum separation conditions at the initial conditions.  Also, no initial conditions are such that 
aircraft are on a collision course that cannot be avoided with control actions over a reasonable time frame.   

Starting with the initial conditions , the position and velocity of each aircraft, the solution to the resulting 
optimization model will be the set of new velocity vectors 

pi,vi
0{ }

vi
+{ } for all aircraft.  Speed and heading commands 

ensuring that condition separation holds, can then be extracted from vi
+ . The new velocity vector  represents the vi

+
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solution for an instantaneous change in the trajectory. The model does not take into account the time to execute 
heading and speed changes.  It is assumed that deviations are small and the time to complete any maneuver fix is 
small in comparison to time to the conflict. However, the safety region about each aircraft can be expanded to handle 
uncertainty from resulting maneuver changes, wind variation, or other unmodeled phenomena. 

 

2.4. Separation Constraints 

For conflict-free trajectories, each pair of aircraft must satisfy the separation constraints (EQUATION 2.1). In this 
section, the separation condition is deconstructed into a set of linear constraints that ensure no aircraft encroaches 
another aircraft's safety region. This approach is similar to the one used in Pallottino et al. (2002) to determine the 
separation constraints. 

Consider a pair of aircraft  and i j  with initial position and velocity states: 

 
pi = xi,yi( ), vi

0 = vi,x
0 ,vi,y

0( ) 

p j = x j ,y j( ), v j
0 = v j,x

0 ,v j,y
0( ) 

 
A given aircraft  may alter its trajectory to prevent conflict by changing its velocity vector by . 
Applying  to each corresponding aircraft defines new trajectories as follows: 

i dvi = dvx ,dvy[ ]T

dvi

vi
+ = vi

0 + dvi  
v j

+ = v j
0 + dv j  

 

 
FIGURE 2.3 To prevent singularities, all pairs of planes are rotated 

 
To avoid singularities in the problem formulation, the reference frame for the pair of planes is rotated so that the angle 

, where Θ  is the angle between the horizon and the connector between the aircraft (Θ i, j = 0 i, j FIGURE 2.3). For an 
initial angle Θ i, j  ε 0,2π[ ), rotation is performed by multiplying the initial position and velocity vectors by the rotation 
matrix  as follows:  Θ i, j

 

R Θ i, j( )=
cosΘ i, j sinΘ i, j

−sinΘ i, j cosΘ i, j

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

pi
r = R Θ i, j( )•

xi

yi

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

8     
 



vi
+,r = R Θ i, j( )• vi

+  

p j
r = R Θ i, j( )•

x j

y j

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

v j
+,r = R Θ i, j( )• v j

+  
 
Once the rotation is performed, a set of linear constraints to ensure that a pair of aircraft maintains separation is 
derived from the relative velocity  of aircraft i  to aircraft˜ v i, j j , i.e. 

 
˜ v i, j = vi

+,r − v j
+,r  

 
Collision between aircraft i  and aircraft j  occurs when the ray originating from aircraft i  extending along  
passes through aircraft

˜ v i, j
j .  To ensure separation, an implementation based on the definition of a safety region around 

each aircraft is possible.  For aircraft with safety regions of radius , the projected safety region of aircraft  along 
 must remain outside the safety region of aircraft

d /2 i
˜ v i, j j , as illustrated in FIGURE 2.4. 

 
FIGURE 2.4 Definition of the safety regions 

 
By understanding the method of ray extension along the relative velocity, the allowable regions for  can be 
delineated. Ultimately, a set of crossing lines,  and , with slopes  and , tangent to the safety regions of 
each aircraft is key to defining the linear constraints through the following relation: 

˜ v i, j
li, j

p li, j
n mi, j

p mi, j
n

˜ v i, j ,y

˜ v i, j ,x

≤ mi, j
n  or 

˜ v i, j ,y

˜ v i, j ,x

≥ mi, j
p  

EQUATION 2.2 Nonlinear Separation Constraint Equations 

 
For aircraft that are  distance apart, with mandatory separation , the slopes  and  are given by: D d mi, j

p mi, j
n

mi, j
p = d

D  

mi, j
n = −d

D 
 

The constraints can be expressed as linear inequalities by multiplying the right-hand side by the denominator .  
Keeping mindful of the condition , and reducing redundant conditions the final set of separation constraints 
expressed in linear form are reduced to: 

˜ v i, j
˜ v i, j ≤ 0
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˜ v i, j,y ≤ ˜ v i, j,xmi, j

n

˜ v i, j,x ≥ 0
   or      or   

˜ v i, j,y ≥ ˜ v i, j,xmi, j
p

˜ v i, j,x ≥ 0
˜ v i, j,x ≤ 0 

EQUATION 2.3 Linear separation constraints 

 
The above constraints (EQUATION 2.3) are expressed as linear inequalities of the decisions variables and 

, which are functions of the speed and heading changes, , to be made to ensure separation.  Furthermore, 
the condition  allows for the case of aircrafts trailing one another, i.e. the singularity of  in the 
slope is admissible for this formulation. The constraints are then applied to all pairs of aircraft.  As the constraints are 
reciprocal, only one set of constraints is required for each pair. 

˜ v i, j ,x

= 0
˜ v i, j ,y dvi,

˜ v i, j,x ≤ 0 ˜ v i, j,x

Note that if avoidance is required to route an aircraft around a no-fly region, moving weather formation, or any type of 
obstacle, then the same process can be used to form the set of linear constraints.  For a non-moving obst cle, it is 
assumed that .  The slopes for  and  are given by 

a
dvobs = 0 li, j

p li, j
n mi, j

p =
d + dobs

2D
, and mi, j

p = −
d + dobs

2D
, where 

 can be selected as the diameter of the smallest circle encircling the obstacle. dobs

 

2.5. Cost Formulation 

In line with the primary goal of providing a framework in which fuel costs are considered in conflict resolution and 
aircraft routing, an appropriate cost function G0 s,Θ( ) can be defined as: 

 
G0 s,Θ( )= gs s( )+ gh Θ( ) 

 
where  and  are nonlinear scalar functions of the airspeeds , and the headings  of the aircraft.  The 
function  measures the fuel burn percentage of an aircraft, while 

gs s( )
gs s(

gh Θ( ) s
h

Θ
) g Θ( ) accounts for the scaled increase in 

distance traveled due to a deviation from the desired route.  Considering both parts, G0 s,Θ( ) is the fuel 
consumption percentage with respect to the optimal path at a desired airspeed when there are no obstacles.  

The measures  and Θ, and thus the cost functions s gs s( ) and gh Θ( ), are nonlinear nonconvex functions of the 
decision variables . In the following sections, we develop tight convex linear approximations for these functions, 
and show that the underlying optimization problem can be modeled. 

dvi

 

2.5.1. Fuel Costs due to Change in Airspeed 

Previous conflict resolution research has focused on minimizing the velocity deviation, , that an aircraft is 
required to make to ensure separation.  Noting that any such deviation incurs costs, a measure of airspeed is 
required to provide a broader framework to understand and study the fairness and costs associated with routing of 
the aircraft.  The final airspeed of aircraft , 

dvi

i si
+ , for determination of fuel burn can be calculated according to a first-

order approximation: 
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si
+ ~ si

0 +
1
si

0 vi,x
0 vi,y

0[ ]dvi = ˆ s i  

 
While a first-order approximation is satisfactory for small heading angle changes, the approximation deteriorates as 
larger heading angle changes are required to avoid collision.  Assuming an aircraft is operating near its optimal fuel 
burn speed, the percent error in airspeed arising from the use of approximation is shown in FIGURE 2.5.  This error 
diminishes the ability of any linear formulation with this approximation to accurately solve for fuel optimal routing. 

 
FIGURE 2.5 Percent error in the first-order approximation of airspeed 

 
To overcome the shortcomings associated with a first-order approximation, additional constraints that make use of 
Special Ordered Sets of Type 2 (SOS2) can be utilized to provide a more accurate approximation of airspeed.  SOS2 
variables are a set of non-negative continuous variables such that at most one pair of consecutively indexed variables 
is nonzero.  Hence, if   λ1,K,λn  is SOS2, and if λi > 0 , then either λi−1 ≥ 0  or λi+1 ≥ 0  and all other λ j = 0 .  
Although introduction of SOS2 variables into the optimization model, which we describe in detail below, adds to the 
complexity of the formulation and increase the time to solve a problem, it enables a much better approximation of the 
airspeed over the feasible region.  

Consider an aircraft with some initial headingθi
0 , and which can perform heading changes of ±dθi  to ensure 

separation, consistent with typical air traffic management procedures.  We assume that the range of possible final 
heading values is broken into  adjacent regions according to the 
set

  

m
,dθθ = dθ1 + θi

0,K ,θi
0,K m + θi

0{ }= K ,θmθ1,{ }. These regions need not be uniform in size.  A grid 
structure over the feasible spa e is then form  including the origin, and the 
set

c ed
( ) ( ) ( )( ) { }m,KqvYX qqiqq ,2,1   sincos, maxmax εθθ= vi,  ∀ . The function Zq = vq  is then evaluated over 

the grid points. The airspeed, , is calculated by forming a convex combination of the function values of the grid 
points associated with the sector encompassing v

ˆ s i
i
+ . The airspeed is given by the following set of constraints: 
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ˆ v i,x
+ = Xqλq

q= 0

m

∑

ˆ v i,y
+ = Yqλq

q= 0

m

∑

ˆ s i = Zqλq
q= 0

m

∑

λq
q= 0

m

∑ =1

λq  ε SOS2 ∀ q

 

EQUATION 2.4 SOS2 Speed Approximation Equations 

 
The SOS2 approximation yields a much tighter approximation over the domain, as shown in FIGURE 2.6.  For the 
example provided, even with four regions, spread over ±45  degrees around the initial heading, the largest percent 
error between the approximation and the actual airspeed is 2%. 

 

 
FIGURE 2.6 Percent error in the SOS2 approximation of airspeed 

 
For cost calculations due to airspeed changes, we assume that the airspeed cost for each aircraft is the percent 
deviation in fuel burn per unit distance traveled when compared to the optimal speed of the aircraft.  Given the fuel 
burn per minute as a function of the true airspeed, this value can be converted to fuel burn per NM traveled by 
dividing by the ground speed. 

Assuming a diverse set of aircraft models, it is important to consider the fuel burn equations for each model type.  For 
each aircraft model, a set of $l$ linear inequalities defined by slopes  and intercepts b  for   ak,i k,i k =1,K, l  based on 
fuel curves such as the ones in FIGURE 2.2 are used to formulate the approximate convex fuel equation, , for the ti
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ith  aircraft: 

 

 

a1,iˆ s i + b1,i ≤ ti

a2,iˆ s i + b2,i ≤ ti

M

al,iˆ s i + bl,i ≤ ti

 

 

2.5.2. Fuel Costs due to Change in Heading Angle 

The cost associated with a heading angle deviation considers the fuel costs required to return to the desired flight 
path, approximating a two step process as shown in FIGURE 2.7. In the first step, the aircraft makes a heading angle 
change to resolve conflict and then in the second stage the heading is corrected back towards the destination. In 
conjunction with conflict detection methods, we assume that there exists a complete knowledge of the system. 
Particularly, we assume that conflict detection methods can predict the largest distance , for a possible conflict 
between aircraft  with another aircraft assuming no corrective action is taken, where  is described in 

di,1
di,1i

i,1

FIGURE 
2.7.  Let  designate the straight-line distance between the destination and the current position of the 
airplane . 

Di = d + di,2
i

 

 
FIGURE 2.7 Heading angle deviations increase the resulting distance traveled by L i,1 + L i , 2  

 
If maintaining separation requires a heading angle change, then the travel distance is , and the scaled 
increase  in the travel distance is: 

Li,1 + Li,2
Dp,i

Dp,i = Li,1 + Li,2( ) Di  
 
Substituting in terms of the heading change dθi  for and applying the law of cosine to solve for  for Li,1 Li,2
dθi ∈ −π 2,π 2( ) p,i, D  can be represented as: 
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Dp,i =
di,1 cos dθi( )+ di,1 cos dθi( )( )2

+ Di
2 − 2di,1Di

Di

 

EQUATION 2.5 Percent increase in distance traveled 

 
Assuming that any heading angle change allows for the aircraft to fly near the optimal fuel burn speed, then the 
additional distance traveled according to EQUATION 2.5 can be represented by a fuel consumption measure.  Note 
that EQUATION 2.5 is a convex function in the interval dθi ∈ −π 4,π 4( ), as can be seen in the corresponding 
plot in FIGURE 2.8 for a hypothetical case.  A contour plot of  as a function of the airspeed changes  is also 
given in 

Dp,i dvi
FIGURE 2.9. 

 

  
FIGURE 2.8 Increase in distance traveled is a convex function of the heading angle change 

 

 
FIGURE 2.9 Contour plot of the scaled additional distance traveled for a required heading change 
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Thus, a linear approximation is possible by fitting a set of  planes between angles 2q θ−q ,θq[ ] to this function. Each 
plane , approximating the w EQUATION 2.5 within some interval θw,θw+1[ ], can be determined by first calculating 
the points xw, yw,zw  and xw+1, yw+1,zw+1 as follows: 

 
xw = vi

max cos θw( )
yw = vi

max sin θw( )
zw = Dp,i θw( )
xw+1 = vi

max cos θw+1( )
yw+1 = vi

max sin θw+1( )
zw+1 = Dp,i θw+1( )

 

 
Then, a linear function relating the scaled increase in distance traveled due to a heading deviation dθi , where 
dθi ∈ θw,θw+1( ) can be obtained by: 

 

det
x y ˆ D p,i

w

x − xw y − yw
ˆ D p,i

w − zw

x − xw+1 y − yw+1
ˆ D p,i
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⎡ 
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⎢ 
⎢ 
⎢ 

⎤ 
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⎥ 
⎥ 
⎥ 

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

= 0 

 
where  is the approximate percent increase in distance traveled and Dp,i

w x = vi,x
+  and . The resulting 

relation can be included as a constraint in the optimization model as 
y = vi,y

+

 
Dp,i

w = c1x + c2y + c3 
 
where , c , and  are constants. c1 2 c3

 
As shown in FIGURE 2.10, the convex planar representation closely approximates Dp,i dθi( ), the approximation 
error is less than 1% for most values of the heading angle change within the nominal operating bounds, and also 
within more aggressive heading angle changes between ±30  degrees.   
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FIGURE 2.10 Percent error in the approximation of the scaled additional distance traveled for a required heading 
change. 

 
Assuming that the aircraft operates at the optimal fuel burn rate when applying a heading change, the additional 
percentage fuel cost due to the heading angle change for aircraft i , , over the optimal fuel burn rate is equal to the 
additional percentage of distance traveled, i.e. . Hence, to implement the plane approximation in the optimization 
model, the following constraints need to be included in the formulation: 

ui
Dp,i

ˆ D p,i
w ≤ ui  ∀ w  

 

2.5.3. Total Cost Function 

We assume that the total fuel cost is calculated to be a mixture of costs to minimize the sum of individual fuel costs 
and minimize the maximum fuel burn over all the aircraft (to ensure that no single aircraft is excessively penalized). 
Thus, the overall objective function for the problem can be expressed as: 

f fuel = Jmtmax + Jstsum  
 

where  Jm  and Js are constants to form a ratio for valuing the minmax or cumulative sum approach; selection of Jm  
and Js is left to be determined. The following constraints also need to be included in the formulation: 

 
ti + ui ≤ tmax ∀ i

tsum = ti + ui
i=1

n

∑  

 

2.6. Computational Study for Static Conflict Resolution 

The performance of the proposed model has been tested on a series of randomly generated test problems, with 
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varying levels of complexity. The complexity of the generated models was measured according to the number of 
planes involved, and the density of the aircraft. Several different levels were considered for each of these two 
complexity measures, which resulted with the 30 configurations listed in Table 1. The number following the letter N in 
the test problem label represents the number of aircraft, while the number after the letter D is the length in nautical 
miles of a side of the square area considered for the problem. The instances were generated by positioning the 
aircraft randomly in the considered area according to a uniform distribution. In addition, the initial headings of the 
aircraft were selected such that the aircraft fly within a 90 degree angle towards the center of the area. Each of the 
test instances assumes a separation requirement of d = 5  NM.  

Computations were performed with four parallel 2 GHz processors and 3 GB of total internal memory, using ILOG 
CPLEX Version 10.0. The algorithmic procedures available in ILOG CPLEX for SOS2 and indicator variables were 
utilized in the computational studies. For each configuration, 40 random test problems were developed and solved. A 
stopping time of 90 seconds was used for the calculations, and the resulting average estimated optimality gap and 
solution time for each configuration are reported in 

TABLE 2.1.  The optimality gap is the percent difference between the current solution and the lower bound on the 
solution when the optimization terminates.  

TABLE 2.1 Performance of the proposed approach on the test cases 

Test Problem Avg. Solve Time 
(sec) Optimality Gap (%) 

N2D350 .01 - 
N2D300 .01 - 
N2D250 .01 - 
N2D200 .01 - 
N2D150 .01 - 
N5D350 .03 - 
N5D300 .03 - 
N5D250 .03 - 
N5D200 .03 - 
N5D150 .03 - 

N10D350 .33 - 
N10D300 .38 - 
N10D250 .35 - 
N10D200 .33 - 
N10D150 .36 - 
N15D350 8.93 .01 
N15D300 7.2 .01 
N15D250 8.57 .05 
N15D200 15.04 .04 
N15D150 9.94 .02 
N20D350 60.33 .10 
N20D300 60.07 .10 
N20D250 68.22 .20 
N20D200 73.58 .40 
N20D150 75.79 .98 
N25D350 81.09 1.44 
N25D300 84.99 1.70 
N25D250 86.51 2.87 
N25D200 89.21 7.58 
N25D150 89.25 12.45 

 
Overall, the computational results show that the developed procedure is effective and efficient in solving the conflict 
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resolution problem in near real-time even for situations with a relatively large number of aircraft involved in conflicts. 
The solution times start to increase substantially as the number of aircraft involved in conflicts exceeds 15, which 
rarely occurs in actual air traffic flow. However, for the instances where there are 15 or more aircraft, the proposed 
approach is still able to produce very good feasible conflict resolution procedures in 90 seconds or less. So, in a real-
time implementation a near-optimal solution can still be obtained if time limitations allow only a short time for 
optimization. Figures 2.11 and 2.12 show the heading angle and speed changes required for the resolution of 
conflicts for a sample problem involving 15 and 20 aircraft, respectively.  

 
FIGURE 2.11 Heading angle and speed changes required for the resolution of conflicts for a sample problem 
involving 15 aircraft 

 
FIGURE 2.12 Heading angle and speed changes required for the resolution of conflicts for a sample problem 
involving 20 aircraft 

 

2.7. Dynamic Conflict Resolution Algorithm 

The above algorithm works by solving the conflict detection and resolution problem for a given instance in time. To be 
realizable in a work environment, it needs to be implemented continuously over long time periods.  Making use of its 
fast computation times it is possible to implement the program in a receding horizon scheme: at discrete intervals the 
problem is resolved as aircraft enter the air space and new velocity solutions are applied to corresponding aircraft. 
Considering that the aircraft would turn towards their destinations after the resolution of conflict, the aircraft positions 
and velocities are propagated forward in time until the next time step at which the optimization is run again. Assuming 
that update times are greater than the computation time this method is feasible.   
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This dynamic algorithm to route aircraft conflict-free from an entry to exit within a volume of airspace can be 
summarized as follows: 

Step 1: For all pairs of aircraft i,j, based on the slopes mij, let 

 

1=ijδ , if i arrives at the intersection point of the trajectories before j; 0, otherwise 

 

Step 2: For all i,j such that 1=ijδ , calculate coordinates ( ) such that ( ) lies '' , ijij yx '' , ijij yx ε+R  nm from the 
intersection of the trajectories on the trajectory of  i –where R is the separation measure, i.e. 5NM. 

Step 3: For all i,j such that 1=ijδ , calculate time as the minimum of the time to arrive at ( ) or at the 
boundary of the volume of airspace – using current velocities 

'
ijt '' , ijij yx

Step 4: Calculate  and let }'{min' ijij tt = }'{minarg' iji ti = . Let t’ represent the time that i' turns toward its exit 
point. 

Step 5: Solve the static conflict resolution algorithm at time t’ such that velocity and heading of i' is fixed at its current 
value in the solution 

Step 6: If all velocities and headings are fixed, stop. Else, go to Step 1. 

Because the algorithm ensures that solutions to the conflict resolution problem are neutrally stable, i.e. any resulting 
changes will never conflict in the future, we can be sure that in between solutions of the receding horizon, that the 
aircraft will maintain separation. A conflict can only occur if one or more of the aircraft changes its velocity or heading. 
The algorithm calculates the time that the first clearance will take place, and resolves the static conflict resolution 
algorithm at that time, assuming that the aircraft clearing first makes a turn towards its exit point.  

 

2.8. Computational Study for Dynamic Conflict Resolution using Cleveland ARTCC Data  

The following case study quantifies the benefits of the optimization program implemented in a receding horizon 
platform for en route traffic. Through a series of considerations of the fuel burn and distance traveled by each aircraft, 
we show that the proposed solution is both able to route aircraft through conflict-free trajectories and able to do so in 
a manner that reduces the overall fuel burn of the aircraft traveling through the center. The study focuses on 
comparing the estimated fuel consumption for a portion of traffic in the Cleveland center under standard air traffic 
control to an estimate of the fuel consumption when aircraft are operated under the optimization program detailed 
above. Cleveland Center was selected for the simulation because it contains a significant portion of the en route 
traffic in the United States.  In particular, there is significant coast to coast traffic with frequent weather disruptions. 

A 24 hour period of air traffic at flight level 36,000 ft over Cleveland is considered for analysis.  The day selected, 
Sunday, May 1, 2005, represents a nominal day in the National Airspace; i.e. there were no significant weather 
patterns or delays in the United States that day. For the flight level selected, aircraft were traveling westbound. 

Aircraft flying at FL36 are selected for simulation because the flight level contained the greatest number of aircraft 
traversing the center within the time period.  Because many aircraft ascend and descend in between flight levels, it is 
necessary to define criteria for selecting aircraft that only spend a fraction of their trajectory at the flight level.  The 
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requirement for selecting flights required that aircraft spend at least 50% of their trajectory at FL36.  For simulation 
purposes the complete trajectory is then assumed to be at FL36.  Entry and exit point were checked to ensure that 
such a change to the flight path does not yield conflicts with other aircraft.  The process yielded 199 flights selected 
for simulation. In the simulation, each aircraft would correspond directly to the historical data: entry and exit points are 
the same, and the same or closely similar aircraft type is assigned (e.g. Boeing 737, AirBus320, etc.). 

Figure 2.13 shows the traffic flow into the center throughout the day. Peak periods of traffic are between 14-24 hours.  
During this time period, a maximum of 22 aircraft are at FL36 within the center. For the most part, heavy traffic yields 
between 14-20 aircraft at the flight level at any given time.  

 

 
FIGURE 2.13 Traffic flow into Cleveland Center throughout May 1, 2005 

The aircraft represented include a broad spectrum of models: wide body, narrow body, regional and business class 
jets.  As shown in Figure 2.14, narrow body aircraft represent the largest portion of aircrafts, followed by regional jets.  
The diversity of aircraft demonstrates the need to consider fuel burn curves for each model of aircraft, especially 
when one considers that each aircraft's optimal operating air speed varies from one aircraft to another. Hence, 
conflict resolution algorithms that assume equal airspeed for all aircraft will incur significant fuel consumption because 
aircraft will not be able operate at their optimal air speed. Additionally, use of the fuel burn curves provides a 
quantifiable measure for the optimization that may not be consistent between aircraft.  For example, if we only 
considered deviation for the optimal speed in the cost, it might lead to unfair solutions. An aircraft flying at 10 knots 
faster than its optimal speed may increase its fuel burn by 5%, while another aircraft would only increase its fuel burn 
1%. Sample fuel curves are provided in FIGURE 2.1 for three types of aircraft. 
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FIGURE 2.14 Traffic flow into Cleveland Center by aircraft type 

The simulation modeling attempts to make a fair comparison between the two fuel consumption estimates.  The 
process to complete the task first requires that ETMS data flight trajectories are filtered to extract en route data over 
the Cleveland center at FL36.  Fuel consumption curves for each aircraft were generated by making use of the Base 
of Aircraft Data (BADA). While the models used for each aircraft and associated parameters are not exact, they 
represent the standard in estimating fuel consumption of airplanes. Furthermore, in terms of the sensitivity of the 
model, because the program works to minimize deviations from a direct routing, the solutions represent a shortest 
path solution, which always produce the most fuel-efficient path. 

 

2.8.1. Case Study Results 

Simulations were performed on the flights described above, and comparisons of fuel consumptions were made 
between the observed trajectories and the trajectories suggested by the solutions of the algorithm.  

Figure 2.15 summarizes the savings that can be achieved by the implementation of the proposed algorithm. In the 
two histograms provided, the reduction in distance traveled with respect to the observed trajectories is displayed both 
in terms of nautical miles and percentages. It is important to note that the trajectories suggested by the algorithm are 
always at least as good as the observed trajectories, with an average saving of around 9 nautical miles.  
Furthermore, as can be seen in Figure 2.16, the suggested speeds by the solution of the algorithm are always near-
optimal. Hence, almost all aircraft travel at their optimal airspeeds, making clear the potential savings through the use 
of the algorithm.  
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FIGURE 2.15 Histograms for absolute and % reduction in NM traveled  

 

 
FIGURE 2.16 Histograms for absolute and % difference in average speed from optimal speed 

 
In Figure 2.17, we show that if observed speeds are different from the optimal speeds, then the savings from the 
algorithm increase significantly.  If all aircraft decrease their speed 10% or 15% below optimal, then the lower bound 
on the system savings is 3.37% and 6.13%, respectively.  The results demonstrate a lower bound on the fuel system 
savings is 1.4% under the assumption all aircraft in the observed data travel their routes at fuel optimal speeds. 
Aircraft that completely traverse the center at distances greater than 350NM, representing 24% of all flights, the lower 
bound on the fuel savings is 2.1%. 
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FIGURE 2.17 Percent fuel savings increase as observed speeds deviate from the optimal speed 

Figure 2.18 shows a scatter plot of individual aircraft, relating the total distance traveled to the savings achieved by 
the proposed algorithms. As expected, the effectiveness of the algorithm increases significantly with the travel 
distance. Finally, Figure 2.19 contains two plots comparing the historical observed trajectories of sample aircraft with 
the corresponding trajectories in the solution. In some cases, especially when the flight distances are short, the 
solutions are similar to the observed values, while at other times, significant savings are observed. 

 

 
FIGURE 2.18 Scatter plot showing relationship between distance saving and distance traveled 
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FIGURE 2.19 Sample observed and suggested conflict-free trajectories – straighter lines represent the suggested 
trajectories 

 

2.8.2. Generating Fuel Curves with Wind Field Effect 

To provide more accurate results it is vital to consider wind fields over the airspace – this is particularly important at 
high altitudes for en route flights. The Aircraft Communication Addressing and Reporting System (ACARS) is a 
source of reliable real-time weather data when available.  Using wind information from the ACARS data it is possible 
to generate wind fields over a given time period. However, because not all aircraft report ACARS information, it is 
necessary to select a flight level and time period in which adequate data density is available.  This helps reduce any 
error in the fuel consumption calculation for each aircraft.  

The effect of wind on fuel burn on the fuel burn curves is to shift the curve according to the ground speed (Figure 
2.20). While wind is spatially and temporally varying, over the time period an aircraft is in the center, it will be 
assumed to operate statically in time, held constant over a one hour period (Figure 2.21). Throughout an aircraft’s 
trajectory, the wind field may change. To model this effect, an average fuel curve is generated over the optimal direct 
path routing of the aircraft. Let the direct path be determined by regularly space points (xk , yk ) for   . Then, 
at each point (

k =1Kn
xk , yk ), a fuel curve taking into account wind can be generated for the aircraft i  associated with the 

trajectory, f (si,aircrafti, xk , yk ) . The function f (si,aircrafti, xk , yk )  takes considers plane aerodynamics and 
fuel burn properties, in addition to wind information at (xk , yk ). Then the average fuel curve over its trajectory can be 
approximated by: 

 

fi,avg = f (si,aircrafti,xk ,yk )
k=1

n

∑  

EQUATION 2.6 Average fuel curve over a trajectory 
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FIGURE 2.20 The effect of wind on fuel burn 

 

 
FIGURE 2.21 Historical and interpolated wind field 

 
To demonstrate the strength of the program, it is reasonable to compare the results of the tactical routing algorithm 
under the assumption that aircraft flight data provided in the ETMS trajectory files are traveling at the fuel optimal 
speed.  Using these speeds to approximate the wind field over the sector and to center the fuel curves, it is possible 
to show that through use of the program, which yields close to direct routing, the algorithm is still optimal.    

 

2.9. En Route Traffic Optimization Conclusions 

A new and advanced air traffic conflict resolution methodology has been presented.  Unlike most models in the 
literature, this methodology allows for simultaneous aircraft heading and speed changes to resolve conflicts.  The 
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maneuvers are determined such that the fuel costs incurred due to the changes are minimized.  The nonconvex cost 
functions of airspeeds and headings have been modeled using linear approximations, which lead to very accurate 
representations of the actual cost functions.  A significant characteristic of the proposed approach is that the optimal 
conflict resolution maneuvers are identified in only a few seconds, which enables implementation of the developed 
methodology in real-time traffic flow management. 

The simulations performed similar to a near-real time implementation in a receding horizon format demonstrate the 
ability for the proposed method to effectively deconflict and route aircraft through an airspace while reducing fuel 
consumption for aircraft over current methods.  While some improvement margins are small, they clearly demonstrate 
an overall improvement. 

Future work considered is for the developed procedure to be extended to three dimensions by modeling multiple flight 
levels, and introducing new variables in the mixed integer programming formulation to represent allowable 
movements between these levels.  This extension is important and will especially add value to the described 
approach, given the additional flexibility to be gained to resolve conflicts.  Also, additional work will focus on routing 
aircraft along non-direct routes. Focusing on non-direct routing will allow for a conflict resolution algorithm to take into 
consideration inclement weather and more complex wind fields. Furthermore, the model can be compared with 
existing heuristic procedures, and the results from the fully implemented optimization procedure can be used as a 
baseline in evaluating other proposed methods.  In addition, computational performance for instances involving a very 
large number of aircraft can be improved by using different parallelization schemes and advanced integer 
programming solution techniques.
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3. En Route Speed Change Optimization for Continuous Descent 
Arrivals 

Continuous Descent Arrival (CDA) is a procedure defined as a descent from a higher altitude continuously without 
extended level segments and with engine throttle setting at idle most of the time. While this procedure has been 
shown by Clarke et al. (2004) and a variety of other researchers (J. Wat et al, 2006, van Boven, 2004), to reduce fuel 
use, in turn reducing emissions, and reducing noise over portions of the descent profile, there are numerous issues to 
address before CDA can become a prevalent procedure. Chief among these issues is making sure aircraft arrive at 
the metering point, the point at which aircraft begin to follow the same flight path to fly CDA, with the necessary time 
interval. Typically, a procedure named the Tool for the Analysis of Separation and Throughput (TASAT) is used to 
determine the time spacing required at the metering point (Clarke et al. 2004). However, an aircraft’s flight plan does 
not often align with the calculated CDA separation.  This shortcoming is the current motivation for CDA 
considerations in en route spacing.  By issuing speed changes to the series of flights participating in the CDA 
procedure during the en route travel portion of the flight, small adjustments to an aircraft’s estimated time of arrival 
(ETA) at the metering point can be made.   

 

 
 

FIGURE 3.1 Image of arriving aircraft during a 2007 flight test at Delta’s Operations Control Center. 

 
Figure 3.1 shows a screenshot of flights participating in a CDA flight test in April 2007. Although there are only 19 
flights shown, one can imagine how difficult it would be to adjust the en route speeds of the flights involved, making 
sure each adjustment is relatively small yet optimal for fuel burn using manual heuristic methods. By incorporating 
speed changes into an optimization formulation, the minimum speed change for each flight can be found ideally 
limiting the mach number change to 0.02 so that ATC does not have to be notified, while minimizing fuel burn for the 
particular aircraft type. In the following subsections, we provide further details about the problem, and describe the 
proposed optimization procedure. 
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3.1. State of the Art Limitations  

The problem of trajectory-oriented time-based metering is not a new arrival to the air traffic management scene. Yet, 
the previous work that has been done is lacking in three main areas.  First, these previous studies have assumed 
particular equipage for the aircraft involved.  Wichman et al. (2001) tested the required time of arrival feature of a 
particular B737-400 aircraft. By programming a time into the aircraft, it was shown that the aircraft could arrive within 
7 seconds of the programmed time. Prevot et al. (2003) assumed ADS-B equipped aircraft, allowing aircraft to 
communicate with each other to achieve the desired spacing. By assuming certain technologies are available; these 
solutions are limited to the schedules of ADS-B implementation, or a fleet of RTA-equipped aircraft. Either way, this 
limitation restricts CDA’s near-term implementation. 

Another limitation of current trajectory-oriented time-based separations is the portion of the flight path during which 
speed changes are made. A study conducted by Weitz et al. (2005) made speed changes during descent to ensure 
accurate arrival times. However, for CDA applications, this technique has some limitations too, because CDA by 
definition minimizes thrust during descent, and if speed changes are made during descent, thrust is no longer 
minimized, reducing the noise and fuel savings of CDA (Weitz et al. 2005). In addition, the amount of spacing 
adjustment is limited by the amount of speed adjustment available to the pilot. 

 
TABLE 3.1 Previous work to address issues of trajectory-oriented time-based separations. 

 
 

The last limitation of current research in this area is a lack of optimization including necessary factors.  Baxley et al. 
(2006) come closest to the desired tool to implement CDA en route spacing, yet in their algorithm, fuel burn is not 
minimized, speed changes are made frequently throughout the flight, which may increase pilot workload, and the 
changes made do not take fairness between airlines into account.  These limitations are summarized in Table 3.1.   
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With the background for CDA en route considerations set, and the limitations in current solutions, the goals of en 
route spacing to implement CDA are as follows:   

• Capable of implementation for a variety of aircraft 
• Does not assume ADS-B equipage (near-term implementation) 
• Minimum number of speed changes made to limit the workload for the flight crew 
• Speed changes should be optimized to limit the increase in fuel burn 
• Speed changes should not favor one airline over another, i.e. include fairness considerations 
• Automate the optimization process as much as possible 
 

Consideration of fairness is necessary to any implementation of CDA, as both pilots and airlines must agree to 
perform the procedure. If each party acknowledges and accepts that fuel burn and scheduling of participating flights 
are altered as fairly as possible, it is assumed that parties will be willing to participate. For this problem, fairness is 
defined as the allocation of speed changes that ensure a proportional (divided in proportion to the claimant’s 
contribution), envy-free (each claimant satisfied with his share), equitable (all parties thinking they received the same 
portion of the total), efficient (Pareto efficiency), and truthful (one party cannot lie about the facts determining their 
resource allocation) measuring and allocation of additional fuel used per airline.  Further explanations of these 
fairness descriptions can be found in the Brams and Taylor references and in Section 3.3.3. The ensuing subsections 
describe how these goals have been met. 

 

3.2. En Route Speed Alteration Formulations 

While developing a computer program to meet the previously mentioned performance goals, several iterations of 
algorithms were developed. Each of the formulations, a one-speed change formulation, a two-speed change 
formulation, and variations of those two formulations including fairness considerations, are described in this 
subsection.  

3.2.1. One Speed-Change Formulation 

The one-change formulation was developed in order to test the feasibility of the solution procedure and provide a 
baseline for future optimization results. In addition, the basic derivations of the one speed-change formulation hold for 
the ensuing two speed-change and two speed-change with fairness solutions.  The first part of the equation is the 
cost function, which simply states that the fuel burn should be minimized for the entire aircraft fleet. 

  (3.1) 

Following this equation are the necessary constraints on the objective function. It is first necessary to linearize the 
fuel burn curve for each aircraft involved in the CDA procedure. Performance data describing these fuel burn curves 
was provided through a partnership with Delta Air Lines. The aircraft involved in this sample CDA flight test for which 
the fuel burn data was collected were Boeing 767-400, 767-300, 757-200, and Boeing 737-800 aircraft. This process 
is equivalent to the following series of constraints: 
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            (3.2a-2c) 

 
Figure 3.2. Diagram of variables for one speed-change formulation 

 
A conceptualization of the relevant problem variables is provided in Figure 3.2. ti is the initial estimated time of arrival 
(ETA).  tD  is the final calculated arrival time, with the difference in ti and tD indicated as dti. In addition, Ti indicates the 
duration of the Mach change. The vertical arrow and the time t0 indicate the time that this change is made. In addition, 
outlined black arrows indicate the decision Mach number, with Mi being the initial cruise Mach number, MD,i being the 
decision Mach number, and dMi, the change in Mach number. For these formulations, a lowercase t indicates a time 
stamp (i.e. 8:35:46), and a capital T indicates time duration (i.e. 300 seconds). 

Next, a constraint is needed to limit speed changes to at most one speed change per aircraft: 

 
i

i
i M

tΔ
≥δ  (3.3) 

In this equation, iδ  is a binary variable. By setting iδ  = 0, an aircraft that is in a group of flights scheduled to fly a 
CDA, but for some reason is unable, would be eliminated from the speed change calculation but still considered in 
the spacing requirements for the remaining aircraft. Such a situation would occur if an aircraft were not FMS-
equipped to fly the CDA, had an on-aircraft emergency (medical or otherwise) where the flight needed to stay at its 
maximum speed, or if the origin and destination airports of the flight were very close so that there is not a significant 
cruise portion of flight during which to make a speed change. In addition, the maximum number of aircraft to which 
speed changes can be issued is specified with the following constraint: 

 . (3.4) δi ≤ j
j=1
∑

J

To ensure that the necessary spacing is maintained, the leading and following aircraft must have spacing greater 
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than or equal to their TASAT-calculated1 separation: 

 (ti+1 − Δti+1) − (ti − Δti+1) ≥ Si,i+1. (3.5) 

It is then necessary to relate the change in the estimated time of arrival (ETA) to the change in Mach number, 
assuming the change in velocity is much less than the cruise velocity, with winds considered. With these assumptions 
and a complete derivation explained in Appendix A, a relationship between time and Mach number can be derived: 

 Δti = Ti
ΔMi

Mi

. (3.6)  

Lastly, it is necessary to limit the possible change in Mach number and calculate the net time during which the speed 
change is made, the final (decision) Mach number, and the final ETA.  These tasks are performed by the following 
three constraints: 

 ΔMi ≤ 0.02, (3.7) 

Md i
Mi = − ΔMi , and (3.8)  

t fi
ti ti . (3.9) = − Δ 

3.2.2. One Speed Change Algorithm While Minimizing Initial and Final ETA Difference 

The objective function, Equation 3.1 above, does not take into account the fact that if there is a speed change for 
each aircraft, the time duration during which the speed change occurs is no longer fixed. The previous objective 
function amounts to finding the speed change for each aircraft which brings it as close as possible to the aircraft’s 
maximum endurance cruise speed. While this objective function would seem to reduce the overall fuel burn, as 
explained by Abad (2004), “Further consider that the coupling between fuel burn and flight time is complex due to the 
occasional trade-off in optimizing for one at the expense of the other.  This coupling is obvious when considering the 
causality of flight time upon fuel burn: a longer flight time necessitates a greater fuel burn”. This scenario is exactly 
the case in the present problem.   

If the flights in question all had initial cruise speeds below the speed of minimum fuel burn rate, the above objective 
function, Equation 3.1, would be adequate.  The flights would all increase speed by some amount so that they reach 
the required separation, the flights would arrive earlier, and fuel would be saved during the en route segment of the 
flight, as well as during the CDA.  However, this is not the reality.  Most flights during the 2007 flight test were cruising 
above the maximum endurance speed, close to the cruise speed for maximum range. Since this higher cruise speed 
was the observed scenario, the above objective function decreased the speed of each flight, actually resulting in 
increased fuel burn for each flight. With this result, the objective function was reexamined, and it was necessary to 
include the time change in the objective function as well.  A simple addition to the above function is  

 ( )∑
=

⎟
⎠
⎞

⎜
⎝
⎛ Δ−=

N

i
iiMi tTfZ

id1
min & . (3.10) 

                                                 
1 Tool for Analysis of Separation and Throughput (TASAT) is a tool running simulations of various aircraft and 
wind conditions to find an optimal aircraft spacing.  It is described in further detail by Clarke et al. 2004. 
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While this addition of t is straightforward in terms of logic, the resulting math is not as simple.  Including two 
unknowns in the objective function when multiplied, create a nonconvex problem.  Fortunately, the problem has been 
encountered previously, and Babayev (1997) has provided a way to deal with such a situation by adding additional 
constraints.  

The approximation method is equivalent to creating a new variable which replaces the nonlinear terms, 

 iMi tfr
id

Δ= & . (3.11) 

The following approximations create a series of planes outlining the values of the function.  It is then necessary to 
create a grid for the possible values of ri.  These grid points are denoted by  

 

 λkli
≈ FkΔTl  (3.12) 

 
with each being a grid point for a specific ri value.  The remaining constraints for this approximation are then  

 
i

id
kl

k l
kM

Ff λ∑∑=&  (3.13) 

 Δti = ΔTl
l
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SOS2 (3.20) μki
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SOS2 (3.21) ηli
∈ 

ri free . (3.22) → 

 
In the above equations, k and l are the number of grid points in the fuel burn and time ranges respectively. In this 
case, the range of possible fuel burn rate values is needed, as well as the range of t’s.  In order to keep the 
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calculation capable of being solved in a reasonable amount of time, a small range of t’s are used.  It is assumed that 
the maximum range for t is within ten minutes of the original ETA, meaning the range of t is -300 seconds < t < 300 
seconds.  The range of 

idM
f&  is from the lowest possible fuel burn rate for which there is data to the highest fuel burn 

rate for which there is data for all aircraft types. By summing these grid values, and enforcing the condition that at 
most four adjacent weights are nonzero (by SOS2 variables), the appropriate portion of the function can be 
approximated.  

3.2.3. Fairness Considerations in Speed Alteration Algorithms 

The suggestion for a fairness criterion to allocate en route speed adjustment is to divide equally possible percent 
increase in fuel burn among different aircraft (or aircraft groups).  Fairness is an important aspect of CDA because for 
CDA to have the most effect, as many pilots and airlines must agree to perform the procedure as possible. If each 
party knows that fuel burn and schedules of participating flights are all being altered as fairly as possible, it is 
assumed that more parties will be willing to participate. Each airline seeks to operate their aircraft at, or close to the 
minimum fuel burn, reducing costs and maximizing aircraft range. By identifying the type of aircraft involved in the 
optimization calculation, the fuel burn characteristics are known for each aircraft. Then, a constraint is needed so that 
the percent fuel burn increase is equalized for all the aircraft involved. Such constraints are  

 100
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 (3.23)  

Pfi
Pfi+1

tolerance . (3.24)  − ≤ 

 

FIGURE 3.3 Minimum fuel burn rate with the % difference between the initial fuel burn rate and the fuel burn rate at 
the decision Mach number compared to the fuel burn rate wanting to be minimized 

The first constraint is simply an expression for the percentage fuel burn, and the second equation ensures that 
consecutive airplanes in the CDA sequence have equivalent percentage fuel burn increases to within some tolerance 
(i.e. 0.01%).  
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An example fuel burn curve is shown in Figure 3.3. The highlighted area shows an example of a range of possible 
values, centering on the initial cruise Mach of the aircraft (indicated by the circle). The percentage deviation from the 
triangle, the fuel burn minimum to the square will be equalized for each flight in the CDA-performing fleet. These 
constraints are a part of the optimization model so that each aircraft has the same percentage increase in fuel burn 
for their re-routings.  

3.2.4.  Variable Sequence Constraints 

It was initially thought that keeping a fixed sequence of aircraft, based on the initial ETA’s of the aircraft group, would 
help to simplify the optimization problem. Such was the assumption explained in Equation 3.5. By keeping a fixed 
sequence, it is only necessary to know the required separation between pairs of leading and following aircraft. These 
n-1 constraints are easy to work with, and minimal coordination with TASAT is necessary, since only a few 
combinations of leading and following aircraft are needed. 

However, by freezing the sequence of the aircraft, the many combinations of aircraft ordering are ignored, and the 
solution giving the lowest possible increase in fuel burn may be missed entirely.  In addition, for terminal area landing 
scenarios where there is limited time to set up aircraft with a necessary separation, enabling a variable sequence in 
the formulation is even more important.  The easiest way to see how a series of variable sequence constraints can be 
implemented can be seen by examining just three aircraft. For three aircraft, one sets a separation distance between 
all three for each leading and following scenario. The conditions to be satisfied are:  

 TSC1
− TSC2

≥ α1,2 (3.25) 

 TSC1
− TSC3

≥ α1,3 (3.26) 

 TSC2
− TSC3

≥ α2,3, (3.27)  

with alpha being the required separation distance based on aircraft type. Here, the separation time is written as being 
the same regardless of the aircraft order, but there will be a different αi,i value depending on the order of the aircraft.  
For example, the separation time for a B767-300 following a B737-800 would be significant lower than for the case 
where the B737-800 follows the B767-300, due to the size difference of the aircraft. However, absolute values create 
a non-convex problem and these constraints must be rewritten as  

 T2 − T1 + α1,2 ≤ Pz1 (3.28) 

 2α2,1 − (T2 T1 P z )1  (3.29) ) (1− + α2,1 ≤ −

T3 T1− + α1,3 ≤ Pz

2

2 (3.30)  

 α3,1 − (T3 T1 P z )2  (3.31) ) (1− + α3,1 ≤ −

T3 T2− + α2,3 ≤ Pz

2

3 (3.32)  

 α3,2 − (T3 T2 P z )3 , (3.33) ) (1− + α3,2 ≤ −

where z1, z2, and z3 are binary variables, and P is sufficiently large so that one constraint is made invalid. In addition, 
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the different separation time for the reciprocal aircraft orders are indicated by αi,j and αj,i for each pair of constraints. 
Only one separation constraint will be active because of the binary variables and large value of P. 

For multiple aircraft, determining all possible combinations of orders and the necessary separation adds many 
constraints, but does not change the solution time of the problem significantly. For n aircraft, it is necessary to have 

 constraints (3 aircraft necessitates 6 constraints, 5 aircraft necessitates 15 constraints, 16 aircraft necessitates 
120 constraints, etc.).   
∑

N

i
1

3.3.  Computational Study for the En Route Spacing Program 

In this section, we describe the computational tests conducted. The following assumptions were used in the 
implementation of the models: 

• The earliest possible time for a speed change is two hours prior to arrival at the metering point 
• All aircraft in the simulation are able to make a speed change (this can be adjusted in actual flight tests 

for nonparticipating aircraft) 
• The tolerance for fairness equalization is 0.0001 (expressed as a decimal, not a percentage) 
• It is assumed that discrete Mach number changes can be made with thousandth accuracy (i.e. increase 

Mach 0.005).  Although this is not a hard constraint in the results presented, it is assumed that rounding 
to this accuracy will not affect the calculation results 

• In order to ensure the Mach change is allowable by ATC, the maximum possible deviation in Mach is 
0.02. 

• Participating aircraft types are limited to Boeing 767-400, 767-300, 757-200, and 737-800 aircraft, as 
those were the only aircraft types flown by Delta during this flight test.  The fuel burn data was obtained 
through a Non Disclosure Agreement with Boeing Aircraft.  (The algorithm can handle other aircraft 
types; so long as the fuel burn information is obtained ahead of time from the aircraft manufacturer.) 

3.3.1. Sample CDA Flight Test Case 

During the April-May 2007 flight test, CDA operations were observed for a period of 4 weeks.  During this time, 31 
days of flights flying early morning operations from the west coast were observed to fly a CDA path shown in the 
figure below.  While the fuel savings and noise data are still currently unavailable for these flights, this flight scenario 
provides a range of sample scenarios for late night CDA operations. A range of aircraft—B737-800, B757-200, B767-
300, and B767-400—were involved in the flight tests, as well as a range of wind conditions for each night.  The 
information collected from each day’s flight test was the date, flight number, tail number, origin airport of the flight, 
whether the plane flew the CDA or not, the runway to which the flight was directed, cruising altitude, cruising Mach, 
takeoff weight, required time of arrival at the metering point RMG, the actual time of arrival at RMG, the scheduled 
arrival time for the destination (ATL), the ATA at ATL, and wheels on time at ATL.   

With this information, cases mirroring what was observed could be tested using the spacing tool developed, En route 
Speed Change Optimization Relay Tool (ESCORT).  On one day, due to the tight initial spacing of the flights (among 
other factors not recorded), 10 of the 16 flights were unable to fly the CDA. A key usefulness test for this study is to 
show the ease with which ESCORT provides a solution to previous problems encountered, and also to show that 
more complex scenarios than what has currently been observed can also be handled. On this sample, worst-case 
scenario day, there were 15 flights, all scheduled to arrive over the metering point RMG, between 9:06 AM and 11:40 
AM.  While on that night, care was taken to space these flights as well as possible, there were too many factors to 
take into account during a live flight test. With such tight groupings, knowing how to increase and decrease the 
speeds of the flights without creating new separation conflicts was beyond the capacity of myself and the other flight 
test researchers present. While this day shows the limitation of heuristic approaches to spacing, it also provides a 
scenario to showcase ESCORT’s usefulness. The details of the difficult May 22, 2007 scenario that will be the basis 
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of the calculation results are shown in Table 3.2:  

TABLE 3.2 Initial test scenario 

Flight Number 
Aircraft 

Type Initial Mach 
Flight 

Departure Time Initial ETA 
Required 
Sep. (s) 

Initial 
Sep. (s) 

940 752 0.78 3:35 AM 9:05 AM 131.1 240 

788 763 0.785 3:39 AM 9:09 AM 107.2 720 

780 763 0.785 3:51 AM 9:21 AM 115 240 

1002 752 0.78 3:55 AM 9:25 AM 135 60 

752 752 0.78 3:56 AM 9:26 AM 131.1 1080 

1478 763 0.785 4:14 AM 9:44 AM 115 180 

716 752 0.78 4:17 AM 9:47 AM 135 0 

1076 752 0.775 4:17 AM 9:47 AM 107.2 300 

1282 764 0.79 4:22 AM 9:52 AM 107.2 60 

480 763 0.785 4:23 AM 9:53 AM 115 180 

1642 752 0.78 4:26 AM 9:56 AM 135 2400 

714 752 0.78 6:06 AM 10:36 AM 131.1 780 

806 763 0.78 6:19 AM 10:49 AM 115 540 

898 752 0.775 6:28 AM 10:58 AM 135 1020 

816 752 0.78 6:45 AM 11:15 AM 135 1500 

636 752 0.78 7:10 AM 11:40 AM   

 

3.3.2. Test Case Results 

It is the intention of this subsection to provide data to determine the most meaningful and time-sensitive constraints to 
include in the final version of ESCORT.  The possible variations in the code include the inclusion/exclusion of 
fairness, having a fixed vs. variable sequence, the inclusion/exclusion of time deviation in the objective function, the 
time prior to the metering point ETA at which the speed change is made, including an integer constraint for the final 
Mach number (keeping the final Mach value discrete), if the two speed change formulation provides valid results, and 
how the time deviation solutions perform with some constraints relaxed.   

In order to summarize these results, a series of sample cases are presented for many combinations of the above 
variables.  While it would be arduous to examine the details of each solution, by examining the solution time, 
objection function values, and net fuel burn difference for the sample cases, the most promising solutions will be 
identified with these parameters and these solutions will then be examined in greater detail.   
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FIGURE 3.4 Objective function values for the algorithms 

 
The data in Table 3.3, Figures 3.4 and 3.5 show the general trends of the algorithm variations. The results of the 
objective function remain fairly constant, with increases whenever the fairness constraints are added.  In addition, 
altering the time at which the speed change is made drastically affects the range of the objective function, because 
there is a significant time difference during which the Mach change takes effect.  This trend shows in algorithms 18 – 
23. It is also important to note that the zero value for the objective function from algorithm 9 indicates an infeasible 
problem. Here, keeping constraints to make the Mach change discrete does not provide the necessary solution space 
for the problem to be feasible. If the inclusion of the difference in time between the initial and final ETA’s (Δt) are 
included in the objective function, the constraints to make the final Mach numbers discrete values must be excluded. 
Although rounding the solutions may produce some error, it remains to be seen how accurately the planes will be 
able to hold their final Mach number, and rounding error may not be any greater than the aircraft’s Mach fluctuation. 
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FIGURE 3.5 Run time and fuel burn differences for the algorithms 

 
Other general trends include a drastic increase in run time with increasing numbers of grid points for the Δt inclusion. 
The outlying point in the run time results corresponds to selecting 6 grid points for the Δt inclusion. While a finer grid 
results in an increased fuel savings (~3 kg), the run time of nearly 2 hrs makes grids with an increased resolution 
difficult to run the program in real time.  However, it is assumed that increased computing power will decrease these 
solution times.  The calculations were made on a computer with a quad-core 2 GHz processor.    

 Because the motivation for this research is primarily an environmental one, with projected goals of fuel 
savings and reduced costs/emissions via this reduction, the algorithm which gives results with the lowest net fuel 
burn increase and solving in a reasonable amount of time, will be considered the best.  It would be tempting to simply 
use the algorithm which gives the minimum objective function, in this case Algorithm 1. However, although this is the 
lowest objective value, it was mentioned previously that this algorithm does not take into account the added travel 
time in the calculation of its objective function. By using the lowest net fuel burn increase as the utility measure, the 
analyst avoids falling into this trap. 

The net fuel burn displayed in Figure 3.5 is the sum of the fuel burn difference for each aircraft compared to 
the fuel burned had the aircraft remained at its initial cruise Mach. It is interesting to note that several of the 
algorithms result in a net fuel savings for the en route portion of the flight, and this fuel savings is independent of the 
CDA benefits, which have yet to be taken into account. While the fuel savings is modest (~10 kg per aircraft), due to 
the concern that CDA spacing may induce greater fuel burn before descent, this may not necessarily be the case. 
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Algorithm 
Description 

Variable 
Sequence 

dt 
Included 

SOS 
Included 

# 
Grid 
Points 

Time 
Before 
Metering 
Fix to 
Make 
Speed 
Change 
(hrs) 

# Speed 
Changes 

Fairness 
Included 

Integer 
Constraint 
for Final 
Mach 

1 
Minimize Fuel 
Burn Only NO NO NO N/A 2 1 NO YES 

2 

Minimize Fuel 
Burn Only w/ 
Fairness NO NO NO N/A 2 1 YES YES 

3 
Minimize Fuel 
Burn Only YES NO NO N/A 2 1 NO YES 

4 

Minimize Fuel 
Burn Only w/ 
Fairness YES NO NO N/A 2 1 YES YES 

5 
Two-change, Fuel 
Burn Only NO NO NO N/A 2 2 NO YES 

6 

Two-change, Fuel 
Burn Only w/ 
Fairness NO NO NO N/A 2 2 YES YES 

7 

Minimize Fuel w/ 
Delay, relaxed 
SOS YES YES NO N/A 2 1 NO YES 

8 

Minimize Fuel w/ 
Delay, relaxed 
SOS YES YES NO N/A 2 1 YES YES 

9 
Minimize fuel w/ 
delay, full SOS YES YES YES 3 2 1 NO YES 

10 
Minimize fuel w/ 
delay, full SOS YES YES YES 3 2 1 NO NO 

11 
Minimize fuel w/ 
delay, full SOS YES YES YES 4 2 1 NO NO 

12 
Minimize fuel w/ 
delay, full SOS YES YES YES 5 2 1 NO NO 

13 
Minimize fuel w/ 
delay, full SOS YES YES YES 6 2 1 NO NO 

14 
Minimize fuel w/ 
delay, full SOS YES YES YES 3 2 1 YES NO 

15 
Minimize fuel w/ 
delay, full SOS YES YES YES 4 2 1 YES NO 

16 
Minimize fuel w/ 
delay, full SOS YES YES YES 5 2 1 YES NO 

17 
Minimize fuel w/ 
delay, full SOS YES YES YES 6 2 1 YES NO 

18 

Minimize fuel w/ 
delay, longer 
hr_change YES YES YES 3 1 1 NO NO 

19 

Minimize fuel w/ 
delay, longer 
hr_change YES YES YES 3 1 1 YES NO 

20 

Minimize fuel w/ 
delay, longer 
hr_change YES YES YES 3 3 1 NO NO 

21 

Minimize fuel w/ 
delay, longer 
hr_change YES YES YES 3 3 1 YES NO 

22 

Minimize fuel w/ 
delay, longer 
hr_change YES YES YES 3 4 1 NO NO 

23 

Minimize fuel w/ 
delay, longer 
hr_change YES YES YES 3 4 1 YES NO 

TABLE 3.3 Description of Possible ESCORT Algorithms (Highlighted algorithms will be examined in greater detail) 
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FIGURE 3.6 Initial and final separation for Algorithm 11 

 

 
FIGURE 3.7 Initial and final separation for Algorithm 15 

With the net fuel burn being used as the metric with which to judge the usefulness of the algorithms, as long as the 
solution time is reasonable, there are 3 algorithms whose results are worth examining more closely. Algorithms 11, 
15, and 19 give the best results, as algorithm 11 and 15 give the lowest net fuel burn increase for a two hour time 
change for non-fairness and fairness inclusions, respectively. Algorithm 19 is of note, because it gives the lowest fuel 
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burn increase with fairness constraints included of any of the algorithms. Algorithm 19 also gives this low net fuel 
burn increase while assuming a Mach change only 1 hour before the aircraft’s arrival at the metering fix. Each of 
these algorithms solves in less than 2 seconds, making them extremely adaptable for a real-time solution scenario. 

 
FIGURE 3.8 Initial and final separation for Algorithm 19 

 
The results of the three algorithms presented in Figures 3.6, 3.7 and 3.8 are those corresponding to Algorithms 11, 
15, and 19 in Table 3.3. Algorithm 11 assumes one speed change, with full SOS2 constraints for the inclusion of the 
altered arrival time in the objective function, solving for four grid points, making the speed change 2 hours prior to the 
aircraft’s initial ETA at the fix, and not including integer constraints on the final Mach number. Algorithm 15 has all of 
the same characteristics, except it includes fairness constraints. Lastly, the differences for Algorithm 19 are that it is 
solved assuming a speed change made one hour prior to the initial metering fix ETA, and that it is solved using three 
grid points.  Again, these algorithms were selected for further examination, because Algorithm 11 and 15 
corresponded to the pair with the lowest net fuel burn values for an assumed speed change two hours from the fix for 
basic constraints and fairness constraints, respectively. Algorithm 19 gave the lowest net fuel burn for any algorithm 
including fairness. 

The first results to be examined are those showing the initial and final ETA separation calculated by ESCORT. While 
these figures appear to show similar information, there are important features to note. Although it is necessary for 
aircraft in each Algorithm to make a speed change to meet the separation constraints provided by TASAT, Algorithm 
11 provides a solution offering little deviation from the aircraft’s initial cruise speed. However, because Algorithm 15 
endeavors to fairly divide the increased fuel usage among the sixteen aircraft, treating each aircraft as if it were 
operated by a separate airline, more movement is necessary to still meet the separation requirements. Finally, in 
Algorithm 19, because the speed change is assumed to be made so much closer to the arrival time, more drastic 
speed changes are necessary indicated by the slopes of the lines from initial to final ETA. While more speed changes 
are needed for a solution one hour prior to the aircraft’s arrival at the metering fix, the problem still remains a feasible 

41     
 



one. 

 
FIGURE 3.9 Mach trajectory for Algorithm 11 

 

 
FIGURE 3.10 Mach trajectory for Algorithm 15 
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FIGURE 3.11 Mach trajectory for Algorithm 19 

 
Figures 3.9, 3.10, and 3.11 further demonstrate the difference in speed change calculations, showing a trajectory of 
the Mach change for each aircraft plotted against flight time, in hours. With these graphs, it is easier to observe the 
relative complexities of each solution.  In Algorithm 11, it is worth noting that five flights do not need to alter their 
speeds at all, showing that care is taken by the airline to select a cruise speed that is optimal in terms of fuel burn and 
schedule.  The other flights are made to change speeds because of the CDA separation constraints in place.  In 
future versions of ESCORT, it may be practical to have a constraint indicating that if a flight is not in conflict, it should 
not be made to change speeds.  However, as seen in Algorithm 11, such a constraint may not be necessary. Yet for 
small speed changes, it may be better for practical reasons to avoid requesting a very small (0.001 Mach) 

 
FIGURE 3.12 Fuel burn difference for en route flight segment (Algorithm 11) 
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FIGURE 3.13 Fuel burn difference for en route flight segment (Algorithm 15) 

 

 
 

FIGURE 3.14 Fuel burn difference for en route flight segment (Algorithm 19) 

 
Figures 3.12, 3.13, and 3.14 show the difference in fuel burn for each algorithm. As with the summing of the net fuel 
burn metric, ESCORT calculates net fuel burn for each aircraft.  This calculation compares the fuel used throughout 
the duration of the speed change to the fuel which would have been used had the aircraft remained at its initial cruise 
speed.   
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The key result from this series of figures is Algorithm 11 calculates a potential fuel savings, not increase, for a group 
of aircraft assigned to fly a CDA, so long as they all belong to the same airline that is looking for an overall net 
benefit.  Algorithm 11 calculates a potential fuel savings of 117 kg for the sixteen combined aircraft.  While this is 
indeed a best-case scenario, the net sum fuel burn for Algorithm 15, a fuel penalty of 476 kg is the worst-case 
scenario with each flight belonging to a separate airline. It will most likely be the case that a series of CDA flights will 
belong to groupings of different airlines, and the fuel penalty (or savings) will lie somewhere within this range.  Much 
of the savings will depend on the particular combination of flight paths and fleet mix for the given day’s CDA grouping.   

The large value of fuel burn difference for flights 716 and 1076 in Algorithms and 15 and 19, respectively, is due to 
these aircraft being scheduled to arrive at the same time. Even if these aircraft were not flying the CDA, a rerouting 
by air traffic control would be likely with the ETA’s of each aircraft being so close. In this case, the fuel burn difference 
between the calculated route for CDA spacing and the conventional route may be less than what is indicated in these 
figures.   

In addition, Algorithm 19 actually gives a net fuel burn increase lower than that found with Algorithm 15. This result is 
surprising, because Algorithm 19 assumes a speed change being made an hour prior to the aircraft’s arrival at a 
metering fix, whereas Algorithm 15 assumes a change two hours prior to arrival.  Yet, while this lower net fuel burn 
for a speed change made closer to the aircraft’s arrival time does not make intuitive sense, fixing the point at which 
the speed change is made keeps the problem linear one with fast solution times. Future ESCORT versions may want 
to run multiple cases to determine the optimal time at which the speed change should be made.  

3.4. Conclusions and Future Work for En Route Speed Change Optimization 

The motivation for this project is to automate the separation of CDA flights so that more parties can experience the 
fuel, cost, and noise savings of CDA.  The formulations presented for the ESCORT program above are a large step in 
meeting this goal, with sample results using initial conditions from a May 2007 CDA flight test validating the solution 
procedures.   

There are two main strengths to this en route speed optimization calculation. The first is a fast solution time. By 
keeping the optimization problem linear (a mixed integer linear programming problem) for all three of the 
formulations—one speed-change, one speed change with fairness, and a speed change made one hour prior to 
arrival—the combined MATLAB and CPLEX code was able to solve the sample problem in two seconds or less, 
depending on the formulation.  The fast-solving formulations therefore will expand well to CDA scenarios where more 
than 16 flights are involved, while still being able to be run in real time. The end goal of the en route speed change 
program is to calculate a Mach trajectory for each aircraft, relay this information to the aircraft’s airline operations 
center (AOC), and then have the AOC dispatchers transmit the Mach schedule to the pilots while in the air.  A fast 
solution time ensures that this end capability is feasible.   

A second strength of the current program is that the results found so far are in line with expectations.  For example, 
although the fairness formulation is more “expensive,” in terms of fuel burn increase, the cost is shared among all 
aircraft, which should be pleasing to the different airlines involved.  However, if it is only one airline involved in the 
CDA formation, the two-change formulation could be used without fairness, since the overall fuel burn increase is less 
in this case.  Another example of the program meeting expectations is that the spacing constraints are met with all 
formulations, with the two speed-change solutions being more accurate.  As two speed-changes allow for greater 
flexibility, this result makes sense.   

While the en route speed change program to implement CDA presented here has addressed many concerns, such as 
fairness, maintaining linearity, and giving logical results, there are areas in which more work needs to be completed. 
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For example, it was assumed that the ETA was an absolute discrete time.  However, observations during the 2007 
flight test showed that a constant ETA is not nearly the case, and these estimations could vary widely during the 
course of a flight.  This en route spacing tool is being developed concurrently with an improved ETA estimator at 
Georgia Tech so that the ETA variation can be minimized.  Future versions of the en route speed change tool must 
handle ETA’s as a mean arrival time with a probability distribution as opposed to the current discrete ETA 
assumption.  Lastly, the sample case presented here assumed the first speed change being made two hours prior to 
arrival at the metering point.  This was done to ensure feasibility of the solution in all formulations and was a 
generous assumption.  However, a more realistic time to make the first speed change will depend on the flight 
scenario for that day.  Future versions of this code must work iteratively from a two-hour speed change solution to 
one that begins prior, with the output being the solution that gives the lowest net fuel burn.  This inclusion will need to 
be an iterative procedure outside of the optimization itself. 

Although there are many future steps to full-scale implementation of this en route speed change program to 
implement CDA, the groundwork has been laid.  Development of the speed change will continue with real time data 
being tested in an airline’s AOC, as well as a future flight test using the program in 2008. This tool will go a long way 
toward expanding the cost, fuel, and emissions savings of CDA to many more air transportation parties once the 
current limitations have been addressed. 
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4. Future Work 

Each technology presented demonstrates how optimization programs can be utilized to reduce fuel burn and 
emissions.  Through research, implementation, and testing we have identified promising future work that will 
significantly advance the state of the art in each.  However, while the methods outlined operated independently, there 
is clearly an imperative to link the two.  If they are not considered together, it is possible that fuel savings en route will 
be offset if CDA procedures cannot be implemented.  Furthermore, an optimization program that assigns arrival times 
and spacing for CDA might yield infeasible solutions if aircraft are unable to achieve arrival times due to conflicts en 
route.   Thus it is proposed, that by properly timing aircraft during the routing and conflict resolution portions, it is 
possible to ensure that CDA spacing can be achieved so that fuel savings will be possible.     
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Appendix A-Derivation of Mach-Time Relationship 

Assume the speed adjustment is implemented at initial point at t0, the time to travel from initial point to the virtual 
metering point is T, the original ETA at the virtual metering point is ti, and the absolute value of ETA adjustment is δt. 
The positive sense of the adjustment Δt is an advance. The relationship between these parameters is shown in the 
following figure for an advance with a value of Δt.  For n aircraft, we assume that the ETA for each aircraft accurately 
determines the sequence of the aircraft, so that the aircraft cannot switch positions. Δt is then determined from 
TASAT analysis, and it is the difference between the initial ETA t1 and the desired time to meet separation 
requirements.   

 
t0 ti 

 Δt 
  
T 

 
Assuming the ground speed of the aircraft is V, the distance D traversed by the aircraft during time T can be obtained 
as 

 

 
 
D = Vdt

t0

ti∫  (A.1) 

 
Assuming the ground speed is increased by a constant value ΔV to achieve a time advance of Δt, the distance 
traversed by the aircraft during time t - Δt remains the same 

 

 
  
D = (V + ΔV)dt

t0

ti −Δt∫ = (V + ΔV)dt
t0

ti∫ − (V + ΔV)dt
ti −dt

ti∫  (A.2) 

 D = Vdt
t0

∫ + ΔVdt
t0

∫ − Vdt
ti −Δt

ti ti ti∫ − ΔVdt
ti −Δt

ti∫ = D + ΔV ⋅ T − Vdt
ti −Δt

ti∫ − ΔV ⋅ Δt  (A.3) 

 
Assuming further that the ground speed V during time period [t1 - δt, t1] remains the same, i.e. V = V1 (corresponding 
to the original mach number) for this time period. Thus, we have 

 

 ΔV ⋅ T −V1 ⋅ Δt − ΔV ⋅ Δt = 0 (A.4) 

 
This gives 
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 T =
(V1 + ΔV ) ⋅ Δt

ΔV
 (A.5) 

This is to say, given ground speed at the virtual metering point, the time duration T needed to achieve a time advance 
of δt for a selected speed increase δV can be obtained or vice versa. 

 

To determine the final , it is necessary to examine the relationship between ground speed and true airspeed and 
winds.  This relationship is shown in the following figure. 

i
dM

 
 
 
 

 
 
 

 
In the figure, Wh and Wc denote head wind and cross wind components respectively. In vector form, we have: 

 

  V = Vr +W  (A.11) 

This gives 

 

 hcr WWVV −−= 22  (A.12) 

The increase in ground speed is then 

 

 ΔV = (Vr + ΔVr)
2 −Wc

2 −Wh[ ]−V = (Vr + ΔVr)
2 −Wc

2 − Vr
2 −Wc

2  (A.13) 

 
Using Taylor expansion and ignoring higher order small terms, we have 

 

 ΔV ≈
Vr

Vr
2 −Wc

2
ΔVr (A.14) 

If the cross wind component is relatively small comparing to the true airspeed, then 

 Vr
W 

V 

 

Wh

Wc  
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 ΔV ≈ ΔVr (A.15) 

 
With the true air speed change known, the mach number change, dependent on true airspeed and altitude can be 
found: 

 ΔM i =
ΔVr,i

a i

. (A.16) 

Lastly, knowing 

 Mi =
Vi

ai

, (A.17) 

and substituting Eq. A.11 into Eq. A.5 and assuming ΔV << V, yields Eq. 6, 

 Δti = Ti
ΔMi

Mi

. (A.18) 
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Appendix B- Nomenclature for En Route Traffic Optimization 

 

ila ,  : Slope of  linear segment of the fuel curve for aircraft i  thl

ilb , : Y-intercept of  linear segment of the fuel curve for aircraft  thl i

iD  : Distance aircraft  must travel to destination i
w

ipD ,  
: Estimated percent increase in distance traveled for aircraft

 
 i

di,1: Distance until the last possible conflict for aircraft i  
min
, jid  : Minimum separation between aircraft i  and aircraft  j

[ i
yxi dvdvdv ,= ]  : Change in velocity of aircraft  between initial condition and final solution. i

D : Initial distance between two aircraft 

fuelf
 : Total cost of objective function 

mJ  : Infinity Norm weighting cost total fuel burn 

sJ  : 1-Norm weighting cost for fuel burn 

nλλ ,,1 K
r

 : SOS2 variables used to estimate speed of an aircraft 

[ T
iii yxp = ]  : Position of aircraft i  

r
ip  : Rotated position of aircraft  in relation to angle i ji,Θ  

( )jiR ,Θ  : Rotation matrix for linear transformation
 

iŝ  : Speed estimate of aircraft i  using SOS2 variables 

it  : Fuel burn for aircraft  corresponding to speed changes i

sumt : Sum of total aircraft fuel burn   

maxt  : Maximum fuel burn over all aircraft 

 : Estimated fuel costs for aircraft  for a heading change i
0
iθ  : Initial heading of aircraft i  

ji,Θ : Angle between aircraft i  and aircraft  and an arbitrary reference line.   Used for rotation of variable to 

prevent singularities in the solution.
 

j

( )0
,

0
,

0 , yixii vvv =  : Initial velocity of aircraft i
 

+
iv

r
 : New velocity command for aircraft i  to solve conflict resolution problem  

[ T
yixii vvv ,,= ]  : Velocity of aircraft i  

r
iv ,+  : Rotated velocity vector of aircraft i  in relation to angel ji,Θ

 

jiv ,
~  : Relative velocity between aircraft i  and aircraft  in rotated frame. j
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Appendix C- Nomenclature for En Route Spreed Change Optimization 
for Continuous Descent Arrivals 

 
α

p, q
 : Sample separation between aircraft p and aircraft q 

δi  : Binary variable indicating whether this aircraft has a change in Mach 

ΔMi  : Change in Mach number 

Δti  : Change in time from initial ETA 

ΔT  : at grid point λ Δti
η

ki

 : Special ordered set 2 (SOS2) indicating which planes corresponding to the fuel burn rate will be used as 

approximations 

  λ1,K,λn  : SOS2 variables used to estimate speed of an aircraft 
λ

kli

 : Variable specifying the grid position for ri 

μ
li

 : Special ordered set 2 (SOS2) indicating which planes corresponding to Δti will be used as approximations 

ai : Speed of sound  
ai,m : Slope of the mth linear segment of a fuel curve 
bi,m : y-intercept of the mth linear segment of a fuel curve 
D : Distance traveled by aircraft 

Ý f i  : Fuel burn rate for an aircraft at a given Mach number 
Ý f min  : Minimum fuel burn rate 

Fk : Fuel burn rate at grid point λ 
j : Selected number of aircraft able to make a speed change 
m : Number of lines in the linear interpolation 
Mbound,I : Maximum or minimum bound on the Mach number change  
M di

 : Final Mach number 
Mi : Initial Mach number 
Pfi

 : Percentage difference in fuel burn rate change 

ri : Variable replacing bilinear term iM
tf

id

Δ&  

t0,I : Start time of first Mach change 
tD : Calculated ETA 
ti : Initial ETA 
Ti : Total time of Mach speed change 
Ti,r : Time interval during which the aircraft returns to its original Mach  
tr : Time at which aircraft returns to its original Mach 
V : Ground speed of aircraft 
Vr : Resultant ground speed 
W  : Wind vector 
WC : Cross wind component of wind vector 
WH : Head wind component of wind vector 
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